

WILDLIFE CONSERVATION PLAN FOR THE IMPACT ZONE OF

DIBANG VALLEY DISTRICT, ARUNACHAL PRADESH

Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh

Project Team:

Project Leader	Dr. V.B. Mathur, Director, Wildlife Institute of India
Project Coordinator	Dr. G.S. Rawat, Dean - FWS, Wildlife Institute of India
Project Co-coordinator	Dr. Gopi.G.V (Terrestrial ecology, Conservation plan)
Investigators	Dr. Asha Rajvanshi (Impact Assessment component); Dr. V.P.Uniyal (Entomofauna component); Dr. B.S. Adhikari (Vegetation and habitat ecology component); Dr. K.Sivakumar (Aquatic ecology component); Dr. J.A. Johnson (Aquatic ecology component), Dr. Gautam Talukdar (GIS/RS component) and Mr. Salvador Lyngdoh (Socio-economics component)
Subject Matter Specialists (Senior Level)	Dr. Sarnam Singh (Conservation and mitigation plan); Dr. Justus Joshua (Terrestrial ecology, conservation and mitigation plan); Dr. Wesley Sundarraj (Terrestrial ecology, conservation and mitigation plan); Dr. Roshni Arora (Aquatic ecology, conservation and mitigation plan component) and Dr. Vidyadhar Atkore (Aquatic ecology, conservation and mitigation plan component)
Subject Matter Specialists (Junior Level)	Er. A.D.Udhayaraj (GIS/RS component); Ms. Arundhati Mohanty (Mammal component) and Ms. Irina Das Sarkar (Entomofauna component)
Project Biologists	Ms. Monideepa Mitra (Vegetation and habitat ecology component); Mr. Sumit Arya (Bird component); Ms. Divya Deshwal (Socio- economics component) and Ms. Pallabi Mitra (Aquatic ecology component)
Project Interns	Mr. Aisho Sharma Adhikarimayum and Mr. S.Deepan Chackaravarthy

All the team members mentioned above equally contributed in field data collection, analysis and report writing

Funding Agency: Etalin Hydro Electric Power Company Limited (EHEPCL), Arunachal Pradesh

Budget: 170.36 Lakhs Only

Citation: WII (2019). Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh. Wildlife Institute of India, Dehradun. Technical Report TR No/2019/01. Pp - 298

CONTENTs

List of tal	bles	
List of Ma	aps	
List of Pla	ates	
List of Bo	oxes	
List of Ar	nnexures	
Acknowle	edgement	
Abbrevia	tions	
Executive	e summary	1
Chapter	1- Introduction	21
1.1	Hydropower potential of Arunachal Pradesh	21
1.2	Biodiversity status of Arunachal Pradesh	22
1.3	Overview of hydropower impacts on the biodiversity of AP	24
a)	General overview	24
b)	Hydropower development and its impact on the biodiversity of Arunachal Pradesh	25
1.4	Rationale for harmonising hydropower development and conservation planning for sustainable outcomes	36
Chapter	2- Environmental and Technical Considerations	28
2.1	Project Background	28
2.2	Objectives of the study	28
2.3	Scope of work and implementation schedule	28
Chapter	3- The Study Area and Project Profiles	31
3.1	Ecological profile	31
3.1.1	Dri River	32
3.1.2	Tangon River	33
3.1.3	Dibang River	34
3.1.4	Sociology of Dibang valley	34
3.2	Project Profile	34
3.3	Delineation of Zone of Influence (ZoI)	35
Chapter	4- Approach and Methodology	36
4.1	Baseline data collection	36
4.1.1	Terrestrial biodiversity	36
4.1.1.1	Flora	36
4.1.1.2	Entomofauna (Arthropods – Butterflies, Moths, Odonates and Spiders)	40
4.1.1.3	Herpetofauna	43
4.1.1.4	Avifauna	45
4.1.1.5	Mammals	48
4.1.2	Aquatic biodiversity	50
4.1.3	Socio-cultural Status	57
4.4	Geospatial database	60

4.4.1	Methodology	62
4.4.1.1	Demarcation of the Study area / Delineation of Zones of Impact (ZOI)	62
4.4.1.2	Satellite data used	63
4.4.1.3	Software used	63
4.4.1.4	Methodology adopted for the Vegetation Types and Land Use / Land Cover Mapping.	63
Chapter	5- Assessment of Biodiversity values in the study area	64
5.1	Habitat Status - Mapping Vegetation and Land Use / Land Cover and other features	64
5.1.1	Vegetation types and Land Use / Land Cover	64
5.1.1.1	Description of different Vegetation and Land Use/Land Cover types	66
5.1.2	Terrain and Topographic features	68
5.1.2.1	Slope	68
5.1.2.2	Aspect	70
5.2	Terrestrial Biodiversity	71
5.2.1	Status of Flora	71
5.2.1.1	Vegetation Community Composition	72
5.2.1.2	Species Richness and Diversity	75
5.2.1.3	Status of Species of Conservation Significance	76
5.2.1.4	Overall Status of Plant Species in and around Etalin HEP Study Area	78
5.2.2	Status of Entomofauna	79
5.2.2.1	Butterflies	79
5.2.2.2	Odonates	84
5.2.2.3	Spiders	87
5.2.2.4	Moths	89
5.2.3	Status of Herpetofauna	92
5.2.3.1	Amphibians	92
5.2.3.2	Reptiles	93
5.2.3.3	Species of Conservation Significance	93
5.2.4	Status of Birds	95
5.2.4.1	Bird Species Richness based on Inventory	105
5.2.4.2	Overall species Richness	105
5.2.4.3	Species of Conservation Significance	106
5.2.5	Status of Mammals	112
5.2.6	Terrestrial Biodiversity Values of Etalin HEP Study Area	119
5.3	Aquatic Biodiversity	120
5.3.1	Habitat Quality	120
5.3.2	Richness and Diversity of Fishes and Benthic Invertebrates	121
5.3.2.1	Benthic Invertebrate Richness	121
5.3.2.2	Fish Richness	127
5.3.2.3	Aquatic biodiversity values in EHEP	132
5.4	Socio-cultural Status and Biodiversity Conservation	134

5.4.1	Household and demographic profile of the Project Affected Villages (PAV)	135
5.4.2	Nature based Livelihood	136
5.4.3	Socio-cultural Importance of Natural Resources	138
5.4.3.1	Importance of Plant Resources	138
5.4.3.2	Importance of Animal Resources	142
5.4.3.3	Religious importance of Natural Resources	144
5.4.3.4	People's Perception on Etalin HEP Project	145
Chapter	6- Assessment of Impacts of hydropower on key biodiversity areas & values	147
6.1	Introduction	147
6.2	Identification of potential significance of terrestrial biodiversity - spatial scale	147
6.2.1	Impact Potential of the EHEP with respect to Terrestrial Biodiversity –Spatial Scale	147
6.2.2	Significance of the Impacts of EHEP on Terrestrial Biodiversity – Spatial Scale	148
6.3	Impacts of project activities on biodiversity – micro level evaluation	149
6.3.1	Predicted Impact Matrix	149
6.4	Land-acquisition Impact on Forest/Community Forest Land	153
6.4.1	Acquisition of Forest and Community Forest Lands – Impacts of Habitat Loss and Biodiversity Values	153
6.5	Project associated activities- Impacts on Biodiversity	160
6.5.1	Muck-Dump Generation and Handling – Impacts on Physical and Biological Resources	160
6.6	Dust and Oxides Emission- Impacts on Forest habitat and Fauna	161
6.6.1	Impacts of Construction Activities - Dust and Gaseous Emission on Vegetation and Faunal Diversity	161
6.6.2	Drilling and Blasting for Coarse and Aggregates Quarry – Impacts of Noise and Ground Vibration	
	on selected Faunal groups	163
6.7	Roads, Heavy Vehicle and Equipment Movements – Impacts on Faunal Groups	164
6.7.1	Unregulated Vehicle Movement - Road Mortality on selected Faunal groups	164
6.8	Impacts on Aquatic Ecology	166
6.8.1	Impact Potential of the EHEP with respect to Aquatic Biodiversity	166
6.8.2	Significance of the Impacts of EHEP on the Aquatic Biodiversity	167
6.8.3	Impacts on Habitats - Water Quality and Physical Changes	168
6.8.4	Assessment of Impacts on Aquatic Biodiversity	169
6.8.4.1	Impacts of construction and widening of Roads	170
6.8.4.2	Impacts of Hazardous and Domestic Waste Disposal – River system	170
6.9	Impacts on Threatened Biodiversity	171
6.9.1	Overall of Project Associated Construction Activities - Impacts on Threatened Fauna	171
6.10	Biodiversity use Values of Local People	173
6.10.1	Loss of Forest Habitat and Impact on Natural Resource Dependency of Local People	173
6.10.2	Labour force related Biotic Pressure- Impact on Forest Resources and Faunal Species	174
6.11	Impacts on Ecologically Sensitive Area –ESA	176
6.11.1	Vicinity of Ecologically Sensitive Area to Project location - Impacts on Ecologically Sensitive Area	176
6.11.2	Project location on Wildlife Corridor – Impacts through Restriction of Movement of Key Species	176

Chapter	7: Mitigation – Biodiversity and Wildlife Conservation Plan	182
7.1	Introduction	182
7.1.1	General Priorities for Biodiversity and -Wildlife Conservation Plan	182
7.2	Priority Issues for Mitigation and Conservation Plan	183
7.2.1	Compensatory Afforestation: Loss of Habitat	183
7.2.2	Green Shelterbelt – Phyto-remediation: Impacts of Dust and Gaseous Emission	183
7.2.3	Muck-dump Management and Restoration – Terrestrial and Riverine Habitat	183
7.2.4	Technical and Managerial Interventions - Drilling and Blasting Effects on Selected Faunal Groups	184
7.2.5	Spatio-temporal Regulatory Mechanism - Roads and Vehicle Impacts on selected Faunal Groups	184
7.2.6	Species Group Conservation Plan – Habitat / Niche Enhancement or Development	184
7.2.7	Aquatic Ecosystem	184
7.2.8	Habitat Rehabilitation and Restoration – Impact on RET species	185
7.2.9	Natural Resource and Life Quality Enhancement – Loss of Forest based Natural Resource	185
7.2.10	Research and Monitoring – Ecologically Sensitive Area and Key Species Monitoring	186
7.3	Action Plan – Mitigation and Conservation Plan	187
7.4	Mitigation – Mandatory Action Plan	188
7.4.1	Compensatory Afforestation	188
7.4.2	Green Shelterbelt- Phyto-remediation	189
7.4.3	Muck-dump management and Restoration	191
7.4.4	Technical and Managerial Interventions – Noise and Vibration	192
7.4.5	Technical and Regulatory Mechanism- Mitigation for Faunal Mortality	193
7.5	Conservation Plan – Biodiversity	194
7.5.1	Species Group Conservation plan – Habitat / Niche Development / Enhancement	194
7.5.1.1	Development of Open Butterfly Parks	194
7.5.1.2	Reptile Park Habitat / Niche	194
7.5.1.3	Facilitating / Enhancing Nesting Niche	195
7.5.2	Habitat Rehabilitation and Restoration -Overall Biodiversity and possibly RET Species	195
7.5.3	Conservation of – RET Flora	196
7.6	Aquatic Habitat and Biodiversity Conservation	197
7.6.1	Waste Debris Management System – Habitat Quality	197
7.6.2	Maintain the Stream Morphology	200
7.6.3	Impacts of Hazardous and Domestic Waste Disposal – River System	200
7.7	Conservation – People's Biodiversity Use Values	201
7.7.1	Selected Natural Resource Enhancement	202
7.7.2	Life Quality Enhancement	202
7.7.2.1	Job opportunity under CRS activities	203
7.7.2.2	Creations of supplementary income generation sources	204
7.7.2.3	Improved Health Care and Education	205
7.7.3	People's Biodiversity Register (PBR) – Programme and Awareness Education	205
7.7.3.1	People's Biodiversity Register – PBR- Programme	205

7.7.3.2	Biodiversity Conservation - Awareness Education	206
7.7.4	Exploitation of Rare Resource	207
7.7.5	Issues related to Migrants on Biodiversity and Culture Values	207
7.8	Research and Monitoring: Tracking Movement Pattern of Key Mammal Species	208

List of tables

- Table 2.1 Details of scope of work under various components of the study
- Table 2.2 Task completion
- Table 3.1 Salient features of the Etalin Hydroelectric Project (EHEP)
- Table 4.1. Details on sampling effort in different Impact Zones for the floral component
- Table 4.2: Details on No. of Transects walked for assessing Butterflies, Odonates and Spiders
- Table 4.3: Details on Sampling done for Herpetofauna
- Table 4.4: Sampling Details of Avifaunal Assessment
- Table 4.5: Quantitative Details of Camera Trap Samplings
- Table 4.6. Sampling sites for Water Quality Parameters, Fish and Macroinvertebrates Across the Seasons
- Table 4.7: Criteria and Description considered for Evaluation of Impacts on RET and Endemic Species
- Table 4.8: Criteria and Description for Impact Indicators
- Table 4.9: Biodiversity Value and Impact Potential Matrix
- Table 4.10: Criteria for assessing Aquatic Biodiversity Values within the Study Area
- Table 4.11: Criteria for Impact Indicators
- Table 4.12: Impact Evaluation Matrix
- Table 4.13: Details on Project Affected Villages and Families surveyed in Anini Circle / Dri river
- Table 4.14: Details on Project Affected Villages and Families surveyed in Etalin Circle / Tangon Basin
- Table 5.1: Extent (km²) and Relative % of different Vegetation and Land Use Land Cover types in Etalin HEP Study Area
- Table 5.2: Extent (km²) and relative % of different Slope classes of Etail HEP Study Area
- Table 5.3: Extent (km²) and Relative % of different Aspect types in the Etalin HEP Study Area
- Table 5.4: Status of different Floral Life Forms in EHEP Study Area
- Table 5.5: Importance Value Index of Tree species of Etalin HEP Study Area
- Table 5.6. Prominence Value Index of Shrub species of Etalin HEP Study Area
- Table 5.7. Prominence Value Index of Climbers of Etalin HEP Study Area
- Table 5.8. Species Richness and Diversity across different Impact Zones of the Etalin HEP Study Area
- Table 5.9: Status of Species of Conservation Significance (RET and endemic species) in Etalin HEP Study Area
- Table 5.10: Overall Status of Plants in and around Etalin HEP Study Area, Dibang Valley, Arunachal Pradesh
- Table 5.11: Taxonomic Richness of Butterflies in Etalin HEP Study Area
- Table 5.12: Richness and Relative % of Butterfly Species recorded in different Impact Zone of Etalin HEP Study Area
- Table 5.13. Similarity Matrix (%) of Butterfly species between different Impact Zones along Dri river
- Table 5.14. Similarity Matrix (%) of Butterfly species between different Impact Zones along Tangon river
- Table 5.15: Status of RET Species in different Proposed Project Activities / Land Uses of Etalin HEP Study Area
- Table 5.16: Overall Status of Butterflies in and around Etalin HEP Study Area, Dibang Valley, Arunachal Pradesh
- Table 5.17: Taxonomic Richness of Odonates in the Etalin HEP Study Area

- Table 5.18: Richness and Relative % of Odonate species recorded in different Impact Zones of Etalin HEP Study Area
- Table 5.19: Similarity Matrix (%) of Odonate species between different impact zones along Dri river
- Table 5.20: Similarity Matrix (%) of Odonate species between different Impact Zones along Tangon river
- Table 5.21: Taxonomic Richness of Spiders in Etalin HEP Study Area
- Table 5.22: Richness and Relative % of Spider species recorded in different Impact Zones of Etalin HEP Study Area
- Table 5.23: Similarity Matrix (%) of spiders between different Impact Zones along Dri river in the Etalin HEP Study Area
- Table 5.24: Similarity Matrix (%) of Spiders between different Impact Zones along Tangon river in the Etalin HEP Study Area
- Table 5.25. Taxonomic Richness of Amphibians in Etalin HEP Study Area
- Table 5.26. Richness Status of different Amphibian Groups
- Table 5. 27: Taxonomic Richness of Reptiles in EHEP study area
- Table 5.28: Richness Status of different Reptilian Groups
- Table 5.29: Richness and Diversity of Bird Species in Etalin HEP Study Area
- Table 5.30: Abundance categories, No. of species (Species Richness and Relative (%) of Birds in different Impact Zones along Dri river
- Table 5.31: Abundance Categories, No. of species (Species Richness and Relative (%) of Birds in different Impact Zones along Tangon River
- Table 5.32. Bird Species Richness and Relative (%) in different Foraging Guilds along Dri River
- Table 5.33: Bird Species Richness and Relative (%) of in different Foraging Guilds along Tangon River
- Table 5.34: Bird Species Richness and Relative (%) in different Foraging Guild in the Study Area
- Table 5.35. Migratory Status of Bird Species along Dri River
- Table 5.36. Migratory Status of Bird Species along Tangon River
- Table 5.37: Migratory Status of Bird Species in the Study Area
- Table 5.38. Bird Species of conservation significance recorded in the Zol of Etalin HEP
- Table 5.39: Species Richness of Mammals in Dri and Tangon basins of Etalin HEP Study Area
- Table 5.40: Status of Mammalian Species Distribution within Etalin HEP Study Area
- Table 5.41: Abundance categories of mammalian species within the study area.
- Table 5.42: Abundance Status of Mammalian species within Etalin HEP Study Area
- Table 5.43. Abundance Status of Mammals based on Camera Trap Nights within Etalin HEP Study Area
- Table 5.44: Overall Mammal Species Richness within Etalin HEP Study Area
- Table 5.45: Status of Species of Conservation Significance within Etalin HEP Study Area
- Table 5.46: Mammal Species of Conservation Significance in upper reaches of Dibang Valley
- Table 5.47: Stream Habitat characteristics and Water Chemistry Variables sampled in Dri, Tangon and Overall basin of Etalin HEP Study Area
- Table 5.48: List of Macro-Invertebrate Taxa recorded along the Dri and Tangon Rivers during Winter Season
- Table 5.49: List of Macro-Invertebrate Taxa recorded along the Dri and Tangon Rivers during Pre-Monsoon Season
- Table 5.50: Detailed information on fish species recorded within the study area (Dri basin, Tangon basin and below the confluence), their IUCN status and endemism (with reference to North-Eastern biodiversity hotspot in India.
- Table 5.51. Demographic Profile of the Villages Surveyed within Etalin HEP Study Area
- Table 5.52: Calendar of Activities that People Engaged in a Year
- Table 5.53: List of Edible and Fodder plant collected from Forest

(vii)

Table 5.54: List of Medicinal Plants collected from Forest

- Table 5.55: Details on Major Natural Resources dependency of Villagers of the Etalin HEP Study Area
- Table 5.56: Types of natural resources used for religious and cultural belief
- Table 5.57: People's Positive and Negative Perception on the proposed Etalin HEP Project
- Table 6.1. Impact Matrix based on list of proposed Project Activities and their possible Impact on Physical, Biological and Social components of the Etalin HEP Study Area
- Table 6.2: Land Requirement Details of EHEP-Project
- Table 6.3: Species Richness status of different Faunal Groups of EHEP Study Area.
- Table 6.4. Details on total quantity of Muck
- Table 6.5: Details of Muck Dumping Sites
- Table 6.6: Summary Details of Ambient Air Quality Status Monitored in the EHEP Study Area
- Table 6.7: Summary Details of Ambient Noise level Monitored in the Project Study Area
- Table 6.8. Summary Details of Equipments in use for all Project Construction Activities
- Table 6.9. Potential Impact of proposed project on Local People's Resource Collection
- Table 6.10: Status of existing Traffic Density and Vehicle Movement in and around Etalin HEP Study Area
- Table 6.11: Checklist of Mammals of Mehao Wildlife Sanctuary, Lower Dibang Valley, Arunachal Pradesh
- Table 7.1. Categorization of the Mitigations and Conservation Plans
- Table 7.2: Compensatory Afforestation Mitigation to Loss of Habitat and Associated Biodiversity
- Table 7.3: Green Shelterbelt Phyto-remediation Mitigation for Dust and Gaseous Emission, Habitat degradation and Biodiversity Loss
- Table 7.4: Muck-dump Management and Restoration to Minimise the Impact on River Systems
- Table 7.5. Technical and Managerial Interventions to minimise Noise and Vibration Impact on selected Faunal Groups
- Table 7.6. Implementing Technical and Regulatory Mechanism to avoid Road Mortality of selected Faunal Groups
- Table 7.7: Species Group Conservation Development of Open Butterfly Parks
- Table 7.8. Development of Reptile Park/Niche- Facilitating / Enhancement of Microhabitat for Reptile Species
- Table 7.9. Facilitating Nesting niche- Deploying Nest boxes for Hole / Cavity Nesting Avifauna
- Table 7.10. Habitat Rehabilitation and Restoration Conservation of overall species diversity and some RET Species
- Table7.11. Conservation of RET Flora Threatened Floral Conservation Plot (TFCP)
- Table 7.12. Possible Road Waste Debris management reduce Forest Loss and Impact on River
- Table 7.13. Prevention of Road-cutting impact on Fish Migration
- Table 7.14. Additional Care in Handling Hazardous and Domestic Waste Plan for Forest and Riverine Habitat
- Table 7.15: Selected Natural Resource Enhancement- Grass Fodder, Bamboo and Wild Edible Plants
- Table 7.16: Life Quality Enhancement Suggested Job Opportunities under CRS Activities
- Table 7.17: Supplementary Income Generation Suggested Programmes
- Table 7.18: Additional Facilitation in Health Care and Education
- Table 7.19: Initiation of Preparation of People's Biodiversity Register
- Table 7.20. Awareness Education Biodiversity conservation and Sustainable Resource Use Targeted Groups
- Table 7.21: Sustainable Use of Rare Resource Paris polyphylla and Cane
- Table 7.22: Measure to Address the Migrant Issues: Hunting and Cultural Values

Table 7. 23: Budget Layout for the Implementation of the Biodiversity Management and Wildlife Conservation Plan of the Etalin HEP Study Area

List of Maps

- Map 3.1: Project Location in the Dibang Valley District, Arunachal Pradesh
- Map 3.2: Different Land Use and Land Cover categories in the Etalin HEP Project Study Area
- Map 4.1: Location of Vegetation Sampling Plots
- Map 4.2: Locations of Vegetation Survey Routes / Trails
- Map 4.4: Map showing Avifauna Sampling Locations
- Map 4.3: Entomofauna Sampling Locations (Line Transects & Forest Trails)
- Map 4.5: Locations of Camera Traps laid for Sampling Mammals
- Map 4.6: Locations of Aquatic Sampling Sites
- Map 4.7: Locations of the Project Affected Villages (PAV) in the Etalin HEP Study Area
- Map 4.8: Toposheet Index of the Etalin HEP Study Area
- Map 4.9: Land Acquisition Areas with Gridded Etalin HEP Study Area Boundary
- Map 5.1: Vegetation Types and Land Use Land Cover of the Etalin HEP Study Area
- Map 5.2: Slope map of the Etalin HEP Study Area
- Map 5.3: Aspect map of the Etalin HEP Study Area
- Map 5.4: 3D Maps of the Etalin HEP Study Area showing the Steepness of Terrain
- Map 5.5: Locations of the Plants Species of Conservation Significance in Etalin HEP Study Area
- Map 5.6: Locations of Butterfly Species of Conservation Significance in Etalin HEP Study Area
- Map 5.7: Locations of Bird Species of Conservation Significance in Etalin HEP Study Area
- Map 5.8: Locations of Mammal Species of Conservation Significance in Etalin HEP Study Area
- Map 5.9: Grid-based Terrestrial Biodiversity values within the Study Area a) Mammal Biodiversity Value, b) Bird

Biodiversity Value, c) Vegetation Biodiversity Value & d) Butterfly Biodiversity Value

Map 5.10: Grid-based Aquatic Biodiversity values within the Study Area

- Map 6.1: Impacts Potential of EHEP w.r.t. Terrestrial Biodiversity
- Map 6.2: Significance of Impacts of EHEP on Terrestrial Biodiversity
- Map 6.3 Impact potential of EHEP w.r.t. aquatic biodiversity
- Map 6.4 Significance of impacts of EHEP on the aquatic biodiversity
- Map 6.5: Distribution of Ecologically Sensitive Area in the Etalin HEP Study Area Landscape
- Map 6.6: Distribution and Possible Movements of Tiger in and around the Etalin HEP Study Area
- Map 6.7: Tigers Camera Trapped at an altitude of 3630 m outside Dibang WLS

List of Figure

Figure 4.1: Flow Chart showing the Methodology adopted for Land Use and Land Cover (LULC) Classification

Figure 5.1 a - Site wise number of macro-invertebrate species recorded during winter season

- Figure 5.1 b Site wise number of macro-invertebrate species recorded during pre-monsoon season
- Figure 5.2. Percentage composition of EPT taxa recorded in winter and pre-monsoon season in Dri and Tangon rivers
- Figure 5.3 a: Overall species rank abundance

Figure 5.4: Rank abundance plot showing five dominant species in a) Dri and b) Tangon sub-basin

Figure 5.5 a: Species accumulation for Dri & Tangon basins combined b) Species accumulation for Dri and Tangon basins separately

- Figure 5.6: NMDS plot showing similar fish community composition in both Dri and Tangon sub-basins
- Figure 5.7 a) Fish species richness across different habitat types
- Figure 5.8 a) Fish richness and b) abundance declined with the increasing distance from the proposed dam in Dri sub-basin
- Figure 5.9 a) Fish richness and b) abundance was higher in the middle river segments in Tangon sub-basin
- Figure 5.10: Primary sources of income of the project study villages
- Figure 5.11: Natural Resource Collection
- Figure 5.12 Distance travelled by hunters for hunting wild animals
- Figure 5.13: People Perception towards proposed Etalin HEP Project
- Figure 6.1: Layout map of Etalin HEP showing infrastructural facilities

List of Plates

- Plate 4.1: Vegetation Data Collection in Etalin HEP Project Study Area
- Plate 4.2: Entomofauna Survey in Etalin HEP Project Study Area
- Plate 4.3: Herpetofaunal Survey in Etalin HEP Project Study Area
- Plate 4.4: Bird Assessments carried out as part of Etalin HEP Study
- Plate 4.5: Setting up of Camera Traps for assessing Mammals in Etalin HEP Study Area
- Plate 4.6: Assessment of Aquatic Biodiversity
- Plate 4.7: Interviewing individuals from local Ethnic Community, in different villages of the Study Area
- Plate 5.1: Some of the Floral Species recorded from the Etalin HEP study area
- Plate 5.2: Some of the Entomofaunal Species recorded from the Etalin HEP study area
- Plate 5.3: Some of the Herpetofaunal Species recorded from the Etalin HEP study area
- Plate 5.4: Some of the Avifaunal Species recorded from the Etalin HEP study area
- Plate 5.5: Some of the Mammalian Species captured in the Camera traps from the Etalin HEP study area
- Plate 5.6: Some of the Macro-Invertebrate Species recorded from the Etalin HEP study area
- Plate 5.7: Some of the Fish Species recorded from the Etalin HEP study area
- Plate 5.8: Handicrafts made using Forest Products and Traditional Handloom
- Plate 5.9: Non Timber Forest Produce Collection
- Plate 5.10: Some of the Trophies and Skins of Wildlife Displayed in the Local Villagers House
- Plate 7.1: Disturbance Forest and Riverine Habitats due Road cutting and widening
- Plate 7.2: Example of Terracing of different slope category dumps
- Plate 7.3: Visuals of Use/Installation of Coir-mats to Restore moderate to steep slopes especially along the Road Sides

List of Boxes

- Box 5.1. Extraction of Paris polyphylla. "A quick and a rewarding income source"
- Box 6.1: Floral species of Conservation Importance Dibang Valley (source CIA & CCS Report 2016)

List of Annexures

Annexure 5.1: Plant Species recorded in the Etalin HEP Study Area Annexure 5.2: Gymnosperms reported/recorded in the Etalin HEP study area Annexure 5.3: Pteridophytes of Etalin HEP Study Area Annexure 5.4: List of Butterfly species recorded in Etalin HEP Project Study Area Annexure 5.5: List of Odonate species recorded in Etalin HEP Project Study Area Annexure 5.6: List of Spider species recorded in Etalin HEP Project Study Area Annexure 5.7: List of Moth Species recorded from Base Camp Annexure 5.8: List of Amphibians and Reptiles recorded in the Etalin HEP Study Area Annexure 5.9: List of Birds recorded and reported as part of Etalin HEP Study Area Annexure 5.10: Overall possible Cumulative List and Conservstion Status of Mammal Species in Etalin HEP Study Area Annexure 5.11: Fish Species found in the Etalin HEP Study Area with their Migration Pattern Annexure 5.12 a: Household details of Anini Circle / Dri Limb Annexure 5.12 b: Household Details of Etalin Circle/ Tangon Limb Annexure 5.13: List of Mammals Hunted, their purpose and Distribution Annexure 5.14. List of birds hunted by the locals and their conservation status Annexure 7.1. Dominants Tree, Shrub and Climber species suggested for Afforestation Programme Annexure 7.2. List of plant species suggested for Green Shelterbelt - Phyto- remediation Annexure 7.3: Observed feeding plants of some common butterflies of the Etalin HEP study area Annexure 7.4: Larval Host Plants of some Common Butterflies of the Etalin HEP Study Area Annexure 7.5: Cavity / Hole Nesting Birds recorded in the Etalin HEP Study Area, and Structural details on Nest Boxes Annexure 7.7. Suggested Native Tree species of Project Study Area for Restoration Annexure 7.8: List of Orchids, Pteridophytes and Lichens of the Etalin HEP Study Area (secondary sources) and species

reported during the Present Biodiversity Survey *

Abbreviations

- AP: Arunachal Pradesh
- ArcGIS: Aeronautical Reconnaissance Coverage Geographic Information System
- BRO: Border Roads Organization
- BV_j: Biodiversity value in a sampled grid j
- CCO: Camps, colony and Offices
- CR: Critically Endangered
- CS: Conservation status
- CSR: Corporate Social Responsibility
- CT: Camera Trap
- DD: Data deficient
- DEM: Digital Elevation Model
- DO: Dissolved Oxygen
- DR: Dri River Limb
- DS: Dam Site
- **DiS: Direct Sightings**
- DSA: Dam Submergence Area
- DWLS: Dibang Wildlife Sanctuary
- DY: Dumping Yard
- EC: Electrical conductivity
- EHEP: Etalin Hydro Electric Power Project
- EHEPCL: Etalin Hydro Electric Power Company Limited
- EIA: Environmental Impact Assessment
- Elj: Exclusive impact in a sampled grid
- EMP: Eenvioronment Management Plan
- ERDAS: Earth Resource Development Assessment System
- FAC: Forest Advisory Committee
- FCA: Forest Conservation Act
- FG: Foraging Guild
- FRL: Full Reservoir Level
- GBH: Girth at Breast Height
- GIS & RS: Geographic Information System and Remote Sensing
- Gn: Genera
- GOI: Government of India
- GPS: Global Positioning System
- H': Shannon Diversity Index

H-al: High Altitude forests HEP: Hydro Electric Project HEPP: Etalin Hydroelectric Power Project HRT: Head race tunnel IBA: Important Bird Areas IHR: Indian Himalayan Region IP_i: Impact potential IR: Infrared IUCN: International Union for Conservation of Nature and Natural Resources IVI: Importance Value Index IWPA: Indian Wildlife Protection Act KBA: Key Biodiversity Areas LC: Least Concern LULC: Land Use and Land Cover MoEF&CC: Ministry of Environment, Forest and Climate Change MS: Migratory Status MSAVI-2: Modified Soil Adjusted Vegetation Index 2 MW: Mega Watt MWLS: Mehao Wildlife Sanctuary NEHU: North Eastern Hill University NIZ: Non-impact zones NMDS : Non-metric multi-dimensional scaling Nt: Near Threatened NTFP: Non-Timber Forest Products O-PA: Outside Project Area P/S Cavity Nesters: Primary / Secondary Cavity Nesters PA: Project Area PAFs: Project Affected Families PAP: Project Affected People PAVs: Project Affected Villages PH&C: Power House and Confluence PU: Polyurethane PVI: Prominence value index QS: Quarry Site R&R: Resettlement & Rehabilitation

RAI: Relative Abundance Index

RET: Rare, Endangered and other Threatened species SANDRP: South Asia Network on Dams, Rivers and People SAT: Study area total SC: Specific Conductivity Sch I: Schedule I Sch-IV: Schedule IV SCS: Species of Conservation Significance SD: Standard Deviation Sp: Species SV: Summer Visitor TBA: total basal area TRL : Tangon River Limb TR : Tiger Reserve TRT : Tail race tunnel VES: Visual Encounter Survey VU: Vulnerable W/B: Workshops, Stores and Batching Plants WII: Wildlife Institute of India WM-L al: Winter migrant to Lower altitude WQ: Water quality parameters WV: Winter Visitor Zol: Zone of influence

Acknowledgements

Ministry of Environment, Forest and Climate Change

Mr. Siddhanta Das, Director General of Forests & Special Secretary Mr. Soumitra Das Gupta, Inspector general of Forests (WL)

Department of Environment & Forest, Govt. of Arunachal Pradesh

Dr. R. Kemp, IFS, PCCF (WL & BD) & CWLW Mr. A. K. Shukla, IFS, PCCF & Nodal Officer (FCA) Mr. Ishwar Singh, IFS, APCCF Mr. Mori Riba, DFO Anini

Wildlife Institute of India

Mr. Ajay Srivastava, IFS, Registrar Mr. P.K. Aggarwal, Administrative Officer Ms. Baljit Kaur, Finance Officer Dr. Soumya Das Gupta, Project Scientist Mr. Deepan Chakkaravarthy, Researcher Mr. Aisho Sharma Adhikarimayum, Researcher Mr. Arif Ahmad, Researcher Mr. Vijay Prasad, Finance Assistant Mr. Kishen Lal, Finance Assistant

Local people and field Assistants

Ipra Mekola, Roing Jibi Pulu, Mishmi camp, Roing 'Project affected people Forum party' Mr. Anandi, Etalin Mr. German, Etalin Mr. Ayan Doley, Etalin Mr. Anando, Etalin Mr. Soko Tayu, Etalin Ms. Sudama Tayu, Etalin Ms. Shanaya, Etalin Mrs. Mano, Etalin Mr. Tuyee Mito, Etalin Mr. Hubi Ekruso, Etalin Mr. Rajeev Taru, Etalin Mr. Ononge Miyu, Etalin

Subject Experts of various organizations:

Dr. Umesh Kumar Tiwari, Scientist, Botanical survey of India, Itanagar, AP Dr. L.K Singh, Scientist, Zoological Survey of India, Kolkata, WB Dr. Kuberdan, Scientist, Zoological Survey of India, Solan, HP Dr. Kumaran Sathasivam, Palladium Documentation, Chennai

Etalin Hydro-electric Power Company Limited

Mr. Anil Dhar, AVP – Hydro Dr. Jagdish Kumar Soni, Group executive, VP (Environment) Mr. Dheeraj Marwaha, DGM-Hydro Mr. Vivek Sharma, Tinsukia Mr. Mustkeem Ansari, Tinsukia Mr. Dipak Melo, Roing

Mr. Lai Linggi, Etalin

All of Idu Mishmi people in Dibang Valley and Lower Dibang Valley

Prayeeba (Thank you)

Executive Summary

Background

The Etalin Hydro Electric Power Company Limited (EHEPCL) has proposed to develop 3097 MW Etalin Hydroelectric Power Project (HEPP) in Dibang Valley district of Arunachal Pradesh. This run-of-theriver project envisages utilization of waters of Dri and Tangon (also known as Talo) rivers for hydropower generation. The water diversion structure on Dri limb is located near Eron village which is about 22 km from Etalin village and the water diversion structure on Tangon limb is located near Anonpani village which is about 17 km from Etalin village. The powerhouse site is located near the confluence of these two rivers near Etalin village, where the river takes the name Dibang. A 101.5 m and 80 m high concrete gravity dams will be built in Dri and Tangon limbs with a total area of submergence 83.22ha and 36.12 ha, respectively. A total of 1,155.11 ha of land is required which would be acquired for construction of project components, submergence area, muck dumping, quarrying, construction camps and colony, etc. The total submergence area due to the dams will be 119.44 ha. A total of 18 villages consisting of 285 families will be affected by the proposed project. The estimated cost of the project is Rs. 25,296.95 crores and it is proposed to be completed in 7 years.

In accordance with the recommendations of "Forest Advisory Committee" (FAC), MoEF & CC and letter no. FOR-279/CONS/2010/Vol-I/836-40 dated 23rd June, 2017 from APCCF & Nodal Officer (FCA), Arunachal Pradesh to Director, Wildlife Institute of India, Dehradun (Annexure-I), a multiple seasonal replicate study to prepare and submit wildlife and biodiversity plan is required to be conducted. The primary scope of the WII study was to prepare biodiversity profile of the study area both through field survey as well as through review of published literature and suggest measures for species conservation and management.

In response to this directive, the Wildlife Institute of India submitted a technical proposal to the Department of Environment and Forest, Government of Arunachal Pradesh, for undertaking the desired study. The primary objectives of the study are:

- a. To determine the current status of wildlife habitat and distribution pattern of plants, entomofauna, fish, herpetofauna, birds and mammals within the impact zone of the Etalin hydroelectric project (EHEP) area covering multiple seasons.
- b. Status and distribution pattern of certain 'Rare, Endangered and other Threatened (RET) species in the impact zone of the EHEP.
- c. Identification of critical habitats, wildlife corridors and migratory paths of RET species in the impact zone.
- d. Assessment of the likely impacts due to the construction and operation of the EHEP and associated activities on flora, fauna and their habitats.
- e. Develop a Wildlife Conservation Plan in order to avoid/mitigate likely hydropower impacts and conserve key biodiversity areas and species.

Based on the objectives of the study, an elaborate scope of work was developed to generate information relevant for developing information and knowledge base with reference to the different biological components included within the purview of consideration for this study.

The EHEP (3,097 MW) is a run-of-the-river project which envisages constructing two concrete gravity dams namely (i) a 101.5 m high dam on the Dri river near Yuron village about 22 km from Etalin and (ii) a 80 m high dam on the Tangon river about 800 m downstream of Anon Pani confluence with Tangon river (from the deepest foundation). The water will be diverted via two separate waterway systems to utilize the available head in a common underground powerhouse located just upstream of the confluence of the two rivers. The underground powerhouse is proposed with 10 units of 307 MW each. In order to utilize the releases of flow for sustenance of aquatic life, a dam - toe powerhouse with 19.62 MW capacity on Dri diversion and dam-toe powerhouse with 7.40 MW capacity on Tangon diversion have been proposed.

Methods

The impacts due to hydropower development on terrestrial and, particularly, aquatic ecology is spatially and temporally extensive and typically broader than the immediate project area. Given the rapid nature of the study, the study area boundaries were defined by the delineation of the Zone of Influence (ZoI) of the EHEP. The Zone of Influence is defined as the farthest possible distance of influence of the development project, emanating from various impact sources. Identification of impact sources took into consideration of type of activities, location and extent of (a) Dam, (b) Submergence, (c) Headrace tunnel, (d)Tailrace tunnel, (e) Muck disposal areas, and (f) Built-up areas for establishing various infrastructures including road network.

The Institute's multidisciplinary team undertook surveys within the Zone of Influence (ZoI) of EHEP, particularly focusing on the immediate impact areas/zones of the hydropower and associated activities e.g., muck disposal sites, quarry areas and other land-acquisition areas. Information on different terrestrial and aquatic biodiversity components was gathered. As hydroelectric projects have a direct bearing on the habitats of both terrestrial and aquatic species, specific taxa were targeted for conducting impact assessment. Taxonomic groups that have flagship values and keystone effects, and are highly sensitive to changes in the habitat and intensity of disturbance in their habitats were selected for the assessment. In this study, mammals, birds, entomofauna, herpetofauna and plants were considered to represent the terrestrial system and fishes and benthic invertebrates were included to represent the aquatic system. The field surveys were conducted between February and May/June 2018, with sampling replicates covering multiple seasons namely, winter / pre-monsoon (February-March), summer / monsoon (April-June).

Terrestrial biodiversity:

Flora: The flora within the ZoI of the Etalin HEP were surveyed in order to generate baseline information and to identify key plant biodiversity areas and key plant species (RET, endemic species) using reconnaissance survey followed by quadrat sampling.

A total of 15 sites were selected randomly depending on accessibility and approach within the ZoI that include the land acquisition sites along both the Dri and Tangon rivers. Within these 15 plotsoverall, 133 plots for trees and shrubs and 266 plots for herbs were quantified. Project land use specific distribution of number of plots sampled

Entomofauna: A total of 63 transects for spiders and 65 transects for butterflies and dragonflies were walked, covering a total distance of 128 km. In addition, forest trails (cumulative distances of 16km) were surveyed for both spiders and butterflies.

Herpetofauna: The abundance of amphibians was assessed using Visual Encounter Survey (VES; Steinke, 2016), along the roads and streams. Frog calls were also used to record the species (Allison and Englund, 2005). Time Constrained Search method (Welsh, 1987) was also followed wherein a specific micro habitat was searched intensively for 5-10 min depending on the size of the microhabitat. Additionally, other opportunistic sightings were also recorded

Avifauna: A total of 89 variable radius point count plots were surveyed and total distance of 50.5 km was covered via line transects. Overall, using McKinnon's species richness method (McKinnon and Philip, 1993), 49 lists were enlisted.

Mammals: A total of 78 camera traps were deployed over an area of 53 km² and a total of 1552 trap nights were sampled in the post monsoon/winter and pre-monsoon season. All the species photo captured in the camera were listed.

Aquatic biodiversity:

Assessment of water quality parameters: The physico-chemical variables, namely dissolved oxygen (mg/l), pH, water temperature (^oC), specific conductance (µS/cm), total dissolved solid (ppm), electrical conductivity (µS/cm), were measured at each of the sampling segments using YSI water quality kit (YSI, Proportional Plus, USA)

Habitat Assessment: As a part of habitat assessment, certain key river meso-habitat characteristics, i.e. runs, riffles, pools and cascades, were measured in all 35 sampling sites. A sampling segment consist of approximately 100-150 m in length. All-important river characteristics were measured in each segment.

Fish Sampling- Fish sampling was done using different types of fishing gears such as cast net, gill net with different mesh size $(0.5 \times 0.5 \text{ mm}, 1 \text{ cm} \times 1 \text{ cm}, 1.5 \text{ cm} \times 1.5 \text{ cm})$, and employing local method (bamboo traps, etc). Fish sampling was done for approximately 60 minutes in each stream segment.

Benthic invertebrates sampling- Benthic invertebrate sampling was done using drift net with fine mesh size (Trivedi and Goel, 1986). Collected benthic invertebrate samples were preserved in 70% Ethyl alcohol and intified them in the lab later.

Socio Economic Survey methodology

Identification of Project Affected Villages (PAVs): Demographic profiles of the district were extracted from Primary Census Abstract, 2011 (National Census, govt. of India, 2011) and list of Project Affected Villages (PAVs) along with list of Project Affected Families (PAFs) were extracted as secondary data (Social Impact Assessment and R & R Plan of EHEP Project, January 2015). A total of 18 villages were identified as PAVs. From this list of PAVs, the number of PAFs for both Dri and Tangon basins of the project area, were identified. The PAVs were further differentiated based on direct (land acquisition) and indirect impacts (other project related activities) of EHEP on the people.

Semi-structured Questionnaire Survey: A standard questionnaire was developed for the collection of primary data from the field. The questionnaire for the survey was pre-tested (trial runs) to assess the appropriateness of the questions. Total 179 households were interviewed in the 22 villages surveyed.

Geospatial database

The GIS database of the Etalin HEP study area was generated by collecting several ground truth data and the data that were acquired from satellite imagery. The landscape features like road, settlements and plantations were generated from the ground truth. The topographic sheets (82P14, 91D02) were used as a reference to affirm the data generated. Geospatial database for the study was developed through the following major objectives.

- Delineation of the Zol (study area) that comprises the proposed dam construction site and sites identified for other related operation activities (land-acquisition areas), and geophysical and biological attributes (Land Use and Land Cover).
- Preparation of different first level thematic maps, namely contour map, drainage map, vegetation type map (Land Use and Land Cover) and maps containing sampling locations, in order to facilitate surveys for all study components.
- Preparation of biodiversity attribute maps (species richness/abundance /diversity/RET species) of different floral, faunal and social components studied.
- Identification and preparation of critical habitat and grid-based biodiversity value, impact potential and impact significance maps for terrestrial and aquatic components.

Status of Biodiversity values in the Study Area

Flora: A total of 563 angiosperm species belonging to 368 genera and 110 families were reported from in and around the study area, which was based on the cumulative list of plant prepared by combining the present study list and the list collated from the secondary sources (EIA 2015). Eight gymnosperms belonging to five families were reported from the area. A total of 31 species of pteridophytes were recorded from the study areas.

Butterflies: A total of 159 species of butterflies belonging to 77 genera spread over six families were recorded in Zol, three of which are listed under the Wildlife (Protection Act), 1972. Of the 159 species recorded, 147 species (75 genera and six families) were recorded from Dri and 125 (67 genera and six families) from Tangon.

Odonates: A total of 11 Odonate species were identified in the study area, belonging to five genera and two families.

Spiders: A total of 113 species (43 identified) belonging to 88 genera (84 identified) from 25 families were recorded from the study area. Among the two basins in the study area, 90 species were recorded in the Tangon basin and 68 species recorded along Dri river.

Moths: A total of 51 species of moths belonging to 45 genera (43 identified) from 12 families were recorded in and around the base camp

Amphibians: Within the study area, 14 species of amphibians belonging to 12 genera and six families were recorded. Ten species of amphibians were reported along both Dri and Tangon rivers.

Reptiles: A total of 31 species of reptiles, belonging to 23 genera and seven families, were observed in the study area. Among the two rivers, 26 species were observed along Dri, while 23 species were observed along Tangon river

Birds:

A total of 230 species were recorded from the Etalin HEP study area. Of these 230 species, 205 species were birds of terrestrial ecosystem, while the remaining 25 species were aquatic or dependent on aquatic ecosystem. Of the 16 range restricted species of Eastern Himalayas (Stattersfield *et al.*, 1998), that are resident in Arunachal Pradesh, six species were sighted and recorded in the study area.

Mammals:

Within the Zol, 21 species of mammals belonging to 19 genera and 15 families were recorded. Of these, 4 species (under 12 genera and 12 families) along the Dri River and 17 species (under 15 genera and 13 families) along the Tangon river.

Five species are listed as threatened under different categories of the IUCN Red list. Of these, one species (Chinese Pangolin) is Critically Endangered (CR), one species (Indian wild dog) is Endangered (EN), two species (Himalayan black bear and Smooth coated otter) are Vulnerable (VU) and one species (Assam Maqaque) is Near Threatened (NT). Three species, Himalayan serow (*Capricornis thar*), Asian golden cat (*Catopuma temmincki*) and Leopard cat (*Prionailurus bengalensis*), were listed as Schedule I of the Indian Wildlife (Protection) Act (IWPA, 1972).

Terrestrial Biodiversity Values of Etalin HEP Study Area

The biodiversity value for mammals, birds, butterfly and vegetation was assessed on the basis of richness of species of conservation significance, threatened (RET) and endemic species. Both Dri and Tangon basin, mammal and bird biodiversity values were assessed as medium, except for grid 39 in Tangon basin which has high bird biodiversity value due to the presence of highest number of RET species (4 out of 12). With respect to vegetation, the Dri basin had medium biodiversity values while very high and high values at the Tangon basin, especially close to the confluence and the proposed dam location. Biodiversity values related to butterflies were mostly high and very high in nature in both Dri and Tangon basins

Aquatic Biodiversity Values of Etalin HEP Study Area

The aquatic biodiversity value was assessed on the basis of species richness, richness of RET species, migratory species, endemic species and the presence of breeding/congregation sites. Along the Dri river, grids with very high and high biodiversity values (15% of total number of sampled grids) were restricted to the upstream sections, close to the proposed dam and submergence area. As compared to the Dri river, Tangon river has a greater number of grids with very high and high biodiversity values (34% of total no. of sampled grids), which are present throughout the river, downstream of the proposed dam location. In all these grids with very high and high biodiversity values, the RET fish species *Schizothorax richardsonii* was present and most of these grids had fish breeding sites and >60% of migratory species found in the study area.

Socio-culture Status and Biodiversity Conservation

As per people's perception, 69.3 % of Project affected families (PAFs) are in favour of the Proposed EHEP Project. They discussed many reasons for the support of the project, which mainly includes, making use of the potential of hydropower, better education, health, infrastructure facilities, job and enhancement of life quality. Only 5 % of the PAFs were not favourable for the proposed project, the

main reasons being loss of land and threat to their culture due to influx of outsiders. The remaining PAFs (slightly more than 20%) were neutral for the project i.e. neither in favour nor against the project

Impacts of EHEP on key biodiversity areas & values

Present Mammal Survey: Status of mammalian fauna in the project area confirmed low abundance. Though, many large to medium sized mammals were reported in the upper reaches and in the Dibang Valley, larger cats such as Clouded Leopard, Common Leopard, Snow Leopard and Bengal tiger and ungulates such as Mishmi Takin, Alpine Musk Deer and Red goral were not reported in the study area during this the study period probably due to the location of the project that is in the lower altitude (600 to 1500), which seems to be unsuitable for them.

Existing Biotic pressures – Project Area: Presence of 22 villages within the project area along the Dri and Tangon limbs and associated shifting agriculture, collection of NTFP, timber, bamboo and cane collection, and other resources leading to degradation of the habitat quality in the proposed project area. Further, regular hunting activities could be a significant factor that reduce the faunal diversity and abundance. Even though, they have traditional right to use the forest resources including hunting of animals, these anthropogenic pressures might be limiting the movements of tiger through the Dri and Tangon river limbs because of low prey base.

Existing Vehicle Traffic - Project area: The existing traffic density estimated at eight sampling locations within the project area across three seasons showed traffic density of 479 vehicles/hour. Irrespective of types of vehicle, in any given season (three season)/any location (eight locations), a total of 20 vehicles/hour move in the project area. Extrapolation of the vehicle intensity, 20 vehicles x 8 hours x 365 days showed that a total of 58,400 vehicles move in the project area in a year. The very high intensity of vehicle movements in the study area could also be one of the factors restricting the movement of tigers in the project area.

Local people's Perception: Social survey and interaction with the local hunters to list the species they hunt also confirm that, though they do not hunt tigers due to cultural belief (the *Idu Mishmi* community do not hunt the tiger as it is considered as next to human kin), they opined that, tiger can be seen only after 2-4 days walk from the river limbs to the upper reaches of Dibang valley and they are never seen in and around the project area.

Wildlife Corridor-Tiger movement: 21 mammalian species were recorded in the study area. Capture rate were estimated as ratio of total captures to total camera trap nights. The estimation showed that, along both rivers (Dri = 0.14 and Tangon = 0.11) as well as within the study area (0.11), less than one capture or one species per 1552 trap nights was recorded, indicating very low abundance of mammals in the study area. After deploying 78 cameras for 1552 trap night/days during a four months survey, no tiger was camera trapped, further we could not find pugmarks or scats of tigers during our surveys. Thus, tiger presence in the study area was not established. Low abundances of prey species in general and absence of larger prey species in specific, along with human related disturbances in the area, might have kept the tiger away from the proposed project area. However, Tiger presence and movement in the project area cannot be completely ruled out based on this few months' survey, as they are long ranging species. Hence, long term monitoring of tiger distribution and movements need to be carried out in and beyond the project area covering 10km radius, which includes the eastern and western hill ranges of the Dri and Tangon limbs for the next five years.

A long-term monitoring study on mammalian fauna in DWLS has recorded presence of few tigers outside the DWLS, especially along the southern boundary. The linear distance measured for the three nearest records (locations) of tigers outside the DWLS and between the boundary of proposed project site ranged from 10.2 km to 14.0 km from the north (tail end of submergence) of the Dri and Tangon reservoir areas respectively. Another ongoing camera trap study on mammals in lower Dibang valley in Mehao Wildlife sanctuary, in the last eight months (October 2017 to May 2018) reported presence of 22 species of mammalian fauna, which does not include tiger, as till date no tiger has been camera trapped.

Tigers inhabit diverse habitat types, and are distributed even in very high altitudinal range and gradients in this region and they have been camera trapped at an altitude of 3630 m in snow peaks in Dibang Valley District. It has been reported at a distance of 10 km north from the northern boundary of the EHEP study site. The present study did not report tiger occurrence within the project area. The existing cumulative impacts such as, presence of more villages, habitat degradation, hunting, high vehicle movements and low prey base, qualify the project area as not potential habitat for tiger to use or move across. Additionally, considering availability of large extent of suitable habitat in the surrounding environs well above the project area, this hydropower project is not visualized to restrict the movement of tigers occurring in and around the DWLS into any direction in the entire Dibang Valley.

Wildlife Conservation Actions

- 1. Land acquisition for project Loss of habitat.
- 2. Muck-Dump Generation and Handling Impacts on bio-physical and biological resources.
- 3. Dust and gaseous emission- Impact of habitat degradation and decrease of faunal diversity.
- 4. Drilling and Blasting Impacts of noise and vibration on selected faunal groups.
- 5. Roads, heavy vehicle movements Impacts of animal movements and isolation.
- 6. Unregulated Vehicle Movement Road mortality on selected faunal groups
- 7. Overall Project Construction activities Impact on aquatic ecosystem
- 8. Overall Project Construction activities Impacts on RET species / species of conservation significance
- 9. Overall Project Implementation Impact of biodiversity use values of local people
- 10. Influx of Labour Force Impact on forest resources and cultural values
- 11. Project Location Impacts on ecologically sensitive area

Overall 11 types of impacts were identified and evaluated, however suggesting and implementing mitigation and conservation plan specific to each impact is not possible. Prioritising mitigation measures, depend on the availability of land use of operational phase of the project, terrain and topography, overall biodiversity values of the project area and the magnitude of impacts.

PRIORITY ISSUES FOR MITIGATION AND CONSERVATION PLAN

Loss of Habitat

Compensatory Afforestation - is the first plan of action and mandatory to mitigate the loss of habitat due to conversion of forest land for the project implementation. However, in most of the cases, the afforestation program is done just like an ordinary plantation with single species are multispecies of

exotic and non-local / non-native species, rather than following scientific approach. Therefore, some scientific approaches are suggested under this mitigation plan.

Impacts of Dust and Gaseous Emission

The impacts on air environment, would indirectly affect the biological values (habitat, flora, fauna) of the project area in terms of habitat degradation. Therefore "Green Shelter Belt Development – Phyto-remediation", a biological intervention is suggested for improving the ambient air quality and minimise the impacts of dust and gaseous emission.

Muck-dump

Large quantity muck / waste dumps will be generated due to excavation activity for the tunnels and construction of different project structures. The proposed excavation in different location is kind of mining activity, hence need to strictly follow similar management actions prescribed for mining pertaining to muck/waste disposal. Therefore, Muck/waste dump handing- technique is prescribed to avoid impacts associated to dust emission.

Drilling and Blasting Effects on Selected Faunal Groups

Drilling and blasting for the, construction of HRT, widening and deepening of river beds along the down streams are one of the major supportive activities of the project implementation, that is visualised to have impact on selected faunal groups. Therefore, Technical and Managerial Interventions are suggested to minimise the impacts of noise and ground vibration on ground dwelling fauna groups.

Roads and Vehicle Impacts on selected Faunal Groups

Heavy vehicles movement, and different types and capacities of heavy equipment will be in use for the construction activities and other project structures. The magnitude of vehicles movements and equipment's to be used in terms of numbers and for a longer period of seven years, is predicted to have impact on selected faunal species like – birds, butterflies, herpetofauna and smaller mammals of the project area. Therefore, with understanding of field scenario, mitigation measures are suggested under "Spatio-temporal Regulatory Mechanism" to minimise the habitat degradation, and Technical intervention – to avoid road mortality.

Impact on Aquatic Ecosystem

Many impacts have been discussed in detail on Impacts on River Habitats - Water Quality and Physical Changes (Refer section: 6.8.3) and Impacts on Aquatic Biodiversity (refer Section 6.8.4). This being run-of-river project, and aquatic ecosystem is highly dynamic and sensitive, maintaining the environmental flow or e- flow during the post construction and operational phase is highly crucial. Therefore, selected mitigation measures are suggested specific to aquatic biodiversity in the form of some technical and managerial implications such as: Waste Debris Management, Maintain Stream Morphology, Waste Disposal Management – Industrial and Domestic (by the migrants in the respective appropriate sections.

Impact on RET species

Biodiversity status survey of the project area resulted in high species richness of flora, birds, butterfly and moderate level of other entomofauna, herpetofauna and mammal species, and presence of few RET species. However, low abundance status of most of the species and few individuals of threatened

species, along with predomination of forest and river habitat and absence of any critical habitat, it was not possible to suggest any threatened species and habitat specific conservation plan.

- Nevertheless, keeping the importance of biodiversity conservation in total and importance of species of conservation significance (RET& endemic species), different representative Habitat Rehabilitation and Restoration plans are suggested to enhance the overall habitat quality of the study area so that, species of conservation significance can be benefitted.
- RET Flora: High floral diversity was reported in the project area (498 plant species) with only one threatened plant *Piper pedicellatum*, listed as vulnerable species under IUCN (Table 5.4 & Annexure 5.1). Being endemic to Arunachal and was found in high density in the study area, no any specific conservation plan is necessitated. However, keeping the floral uniqueness of the Dibang valley; diversity of orchids, threatened and endemic species, pteridophytes and lichens and fungai (See Box 6.1), it is recommended to develop a "Threatened Floral Gene-Pool Plot TFGPP" in the close vicinity of the project area.

Loss of Forest based Natural Resource

The entire local population belong to forest dependent ethnic group and 50% of the project affected people depend on forest resource (NTFP, hunting, fishing and collection of wood resources) for income generation and survival. Further, the locals also hunt 30 and 43 species of mammals and birds respectively from the forest. Therefore, conversion of community land for the project implementation has been visualised to have natural resource depletion for the forest dependent local villagers and also restrict the access to the forest resources, which need to be addressed.

Action Plan – Mitigation and Conservation Plan

The previous sections discussed diverse issues identified during this study and rationale for the implementation of the suggested plans. Further these plans can be grouped into three types such as, 1 Mitigation plans – Mandatory, 2 Conservation Plans – Biodiversity and 3. Conservation plan –Resource enhancement of Peoples' use values. The mitigation plans are mandatory under the MOEF&CC to minimize the impacts that would indirectly influence the biodiversity attributes of the study area.

MITIGATION – MANDATORY ACTION PLAN

Therefore, conservation plan has been drawn taking the existing scenario into consideration and mainly includes general plans for the betterment of wildlife in the project areas. The conservation and management plans suggested here are mainly the issues identified during the survey, specific to biodiversity values of both terrestrial and aquatic systems and the local's perception on the effects on biodiversity use values.

- a) Compensatory Afforestation: Compensatory afforestation is one of the foremost mitigation measures which come under the compliance of MOEF & CC to address the loss of habitat and associated biodiversity (Table 7.2 of Chapter 7). A total of 26.23 Cr has been budgeted as cost of afforestation as part of the Compensatory Afforestation Programme under the EMP (12.2). So this activity may be covered under EMP ensuring that all the subactivities are carriedout. Hence, budgetary provisions are not provided in Table (i).
- b) Green Shelterbelt- Phyto-remediation: The major source of dust and gaseous emission are going to come from all the project related land preparation, excavation, construction, handling

of waste dump, man power and material transportation, movements of vehicles and underground tunnelling. Plant species that can act as bio-filter agent to control air related pollution problems at population and species levels are recommended as a biological intervention keeping in mind the magnitude of air pollution that is likely to occur. The total budget need for Green Shelterbelt – Phyto-remediation is Rs. 12 lakhs the details of which are given in Table (i).

- c) Muck-dump management and Restoration: The total quantity of muck to be generated due to excavation and underground tunnel construction etc. is estimated to be 108.9Lac m³. Dust emission during muck handling, dump formation, runoff muck due to soil erosion, predominately impact on hydrological regime and water quality of rivers. Hence, adoption of technical and biological (dump restoration) mitigations would curtail the possible impacts on aquatic ecosystem A total of 114.73 lakhs has been budgeted as cost relocation and rehabilitation of excavated material under the EMP (7.5). So this activity may be covered under EMP. Hence, budgetary provisions are not provided in Table (i).
- d) Technical and Managerial Interventions Noise and Vibration: Increase in movements of vehicles, machineries, workshops, operation of DG sets, drilling and blasting for tunnelling and quarrying are the major sources of noise and ground vibration. Table 7.5 illustrates technical and managerial skills that would minimise the impacts of noise and ground vibration on selected faunal groups when implemented. Some of the interventions include using standard mine explosives, silencers on heavy equipment, PU (Polyurethane) panels in vibrating screens, maintenance of machinery, time restrictions on blasting, monitor noise levels periodically etc. A total of 50 lakhs has been budgeted as cost of Noise Mitigation and Management under the EMP (1.4.1.9). So this activity may be covered under EMP. So budgetary provisions are note given in Table (i).
- e) Technical and Regulatory Mechanism Mitigation for Faunal Mortality: Construction activities involve heavy vehicle traffic as well as movement of equipment. The intensity and speed of vehicles specifically carrying manpower materials are likely to be more compared to the movement of equipments. Therefore, it is important to restrict the speed and frequency of vehicular movements that would minimize the impacts on herpetofauna and ground dwelling mammals. The main mitigation measures suggested for reducing faunal mortality include:
 - (1) Building of trenches that will act as an underpass for movement of reptiles and smaller mammals for crossing roads.
 - (2) Erecting sign boards along the road side to control speed limits as well as inform about the animal crossing points.
 - (3) Educating the drivers for maintaining the decorum of speed limits/blowing horns and making them aware of "Right of way" is first for animals.

The estimated budget for the implementation of this action is Rs. 19 lakhs (Table (i)).

2. BIODIVERSITY CONSERVATION PLAN

This section deals with different species group conservation plans which include Habitat/Niche development/Enhancement. The project study area reported with high species richness of butterfly,

birds and moderate richness of herpetofauna, however, due to low abundance of these species, three types of conservation plans are suggested for butterfly species, specific group of hole / cavity nesting birds and reptile species. The details of plan of actions for these are discussed in the following sections.

a) Development of Open Butterfly Parks

Some of project areas like residential colony, labour camp site, office premises, schools and health care centre can be selected for the development of open butterfly parks. A total of 4-5 parks can be developed to attract a portion of the 159 species of butterfly identified. It is proposed to grow two types of host plants, food / nectar plants for adults and larval host plants for laying eggs and larval development in the surrounding areas of the selected sites. In addition to host plants the area should also develop other ornamental and garden species. This might enhance butterfly diversity. Based on the field observation and literature, a total of 23 adult host plants and 13 larval host plants have been identified for the development of butterfly parks. In these parks, signage for the most common species as well as the threatened species depicting basic information on size, life cycle, distribution and ecological importance of butterflies are to be placed. The estimated cost of the five butterfly parks is Rs. 1.3 Cr, the break up of which is given in Table (i).

b) Development of Reptile Park/Niche- Facilitating/Enhancement of Microhabitat for Reptile Species

Two parks with an area of 5 ha each (one in each River limb) would be adequate for this demonstration project. The area selected/identified will be free and far from the human habitation (this could be area marked for waste dumps). Artificial burrows in varying sizes will be constructed using rock heaps and propagated with the seeds of local shrubs and grass species. A portion of waste wood generated during land clearing will be strategically incorporated within this area. These efforts along with Awareness education for safe handling and saving of snake species will help conserve reptiles and their associated habitat. The estimated cost of the two Reptile parks is Rs. 48, 56,000/-, the breakup of which is given in Table (i).

c) Facilitating Nesting niche- Deploying Nest boxes for Hole/Cavity Nesting Avifauna

The plan of action for conserving avifauna is by providing additional nesting habitat and compensate for loss of tree with cavities by provisioning nest boxes based on size of the birds and setting them up before breeding season begins. Monitoring of the nest boxes for at least two breeding seasons is required to know success/occupancy rate. Knowledge creation on ecosystem services of bird community would help generate awareness about the effects of hunting birds and disturbing nest boxes. A total of 50 Lakhs has been budgeted as cost of habitat improvement for avifauna under the EMP (1.3.2.2). So this activity may be covered under EMP ensuring that all the subactivities are carriedout. Hence, budgetary provisions are not provided in Table (i).

d) Habitat Rehabilitation and Restoration –Overall Biodiversity and possibly RET Species

The suggested habitat restoration plans are focused to conserve overall biodiversity values of the project area and through that some of the RET species can also benefit. For example, the compensatory afforestation, has to be implemented in the close vicinity of the project area. Therefore, this habitat restoration program is targeted to restore the land areas of muck dumps (91.79 ha), quarry pits (62.12ha) and 16 ha of labour camp area stated to be restored after

construction phase. All the restoration plans and techniques are detailed in table 7.10. of Chapter 7. The estimated cost for the Habitat Rehabilitation and Restoration – Overall Biodiversity and RET Species is Rs. 50.25 lakhs, the details of which are given in Table (i).

e) Conservation of RET Flora

The floral species richness is high in Dibang valley and it supports diverse and unique species like orchids and pteridophytes. In addition to some highly threatened (Critically endangered and endangered) and endemic species to Arunachal (See Box 6.1 of chapter 6). Therefore, it is suggested to develop Threatened Floral Conservation Plot – TFCP through creating Botanical Garden in the vicinity of the project area (Table 7.11, Chapter 7). Development of eco-park or biodiversity preservation plot is one of the biodiversity conservation concepts that has been already been implemented / taken up in many states. The total estimated cost for implementing this specific action on Threatened Floral Conservation Plot (TFCP) is Rs. 29.40 lakhs, the details of which are given in Table (i).

f) Aquatic Habitat and Biodiversity Conservation

The proposed construction of 50km approach road and 35km widening of existing roads are expected to adversely impact on both the forest and riverine habitats in terms of loss of habitat and sediment deposition on river system respectively, and thereby affecting the faunal diversity. It was observed that the ongoing road widening project along the stretch between Etalin and Yuron village significant forest cover are being lost (**Plate 7.1 of Chapter 7**). Therefore, to minimize such severe impact on the forest vegetation and as well as sedimentation in the river, Road Waste Debris Management Actions are suggested in **Table 7.12 of Chapter 7**. The estimated cost for implementing this action which is very crucial is Rs.1.03 Cr the break of which are given in Table (i).

g) Maintain the Stream Morphology

A network of 16 major steams feeding water from the catchment area into the Dibang river system has been identified. Road cuttings across these streams would cause a lot of changes in the channel morphology, that may destroy spawning grounds and obstruct migratory routes of the fishes. Therefore, maintaining the stream morphology and flow are very important because the upstream migration of fishes which will be stopped due to the construction of Dams in both the Dri and Tangon rivers. Reduction of the impact of road-cutting through the construction of culverts/small dams across all the streams would be an effective mitigation plan (**Table 7.13 of chapter 7**). The implementation and cost of this action should be included along with the road construction work.

h) Impacts of Hazardous and Domestic Waste Disposal – River System

Impact of hazardous wastes, domestic sewages and solid wastes disposal are very common in any mega developmental project. In general, domestic sewage problems will be attended through construction of ETPs, while rest of the hazardous and solid waste will require proper management especially in the project area that is located in the middle of forest and riverine habitat, which are discussed in **Table 7.14** of Chapter 7. This action needs to be attended to during construction of labour camps and colonies for workers.

3. Action plan for enhancement of bio0resources for people

a) Selected Natural Resource Enhancement

The local villagers depend on diverse forest based natural resource for their livelihood and life supporting systems. The social survey on impacts of project on natural resource showed that fodder and wild edible plant are expected to be impacted at low level, while bamboo collection at moderate level (**Table 6.9 of Chapter 6**). Further, during construction period, the migrant work force is expected to exploit the available natural resources more. Hence under natural resource enhancement, it is recommended to develop Grass Fodder Plot (cost Rs. 1 Cr), Bamboo Plantation (Rs. 70 lakhs), and Wild Edible Plant Garden (cost Rs, 35 lakhs) (Table (i)) to minimize local resource loss and depletion. **Table 7.15 of Chapter 7** enlists the action plan that can be followed for the above mentioned recommendations.

b) Life Quality Enhancement

Local people have an understanding on the need of the project for sustainable utilization of hydro power potential of Arunachal Pradesh, some of their main expectations include job opportunities in the project, additional income sources, better/improved road and transport, education and health care (**Table 5.57 of Chapter 5 lists their views**).

People's perception study on the proposed project showed 70% of the villagers in support of project due to their expectation on many developments, related to infrastructure, education, job, health and overall enhancement of life quality. Therefore, it is a prerequisite for project proponent to fulfil the expectations of the locals for development of socially acceptable, economically feasible and ecologically sustainable activities in Zol.

Providing job opportunity, creations of supplementary income generation sources, health care, and improved education will fall under CRS compliance. The CRS activities such as Job opportunities, providing vocational courses to families losing agricultural land, improving healthcare and more, suggested in **Table 7.16 of Chapter** 7 would enhance the life quality of the locals thereby making the project socially acceptable and feasible.

c) Development of additional livelihood

Providing jobs to one or more members of all project affected families may not be possible, hence it is recommended to support additional livelihood generation programmes (Listed in **Table 7.17 of chapter 7**) so that, it would bring down their dependency on forest based natural resources. These activities may be taken up as per the project's R& R Plan ensuring all the subactivities are covered. Hence, separate budgetary provisions are provided in Table (i).

d) Improved Health Care and Education

Providing health care and education are again common infrastructure development under CSR activities, **Table 7.18 of Chapter 7** enlists the infrastructure and facility needs.

e) People's Biodiversity Register (PBR) – Programme and Awareness Education

Hunting of wildlife (major source of protein) and use of forest resources (NTFP and other bamboo, cane and wood materials) are community right. People hunt many species of birds (43 species) and mammals (30 species) for their consumption and to some extent for commercial purpose (**Annexure 5.13 & 5.14**). The attitude of commercial use of free resources for additional income is expected to increase many fold due to the influx of large number project manpower / people (outsiders). Hunting being a significant impact and will have direct

influence on the population of faunal species, this serious issue should be tackled immediately through series of very strong and effective awareness programs for the targeted groups by initiating the preparation of People's Biodiversity Register – PBR- Programme (**Table 7.19 of Chapter 7**), which will aid in documenting all the local biodiversity and the threats faced. This register will form the baseline for monitoring long term. The total cost for implementation of this action plan is Rs. 25 lakhs. The breakup is given inTable (i).

f) Biodiversity Conservation - Awareness Education

Systematic and well planned series of awareness education camps should be initiated targeting different groups of stakeholders starting from school children, youths, elders of local villages, hunters, migrant project people. This can be done by involving a reputed local NGO with good experience in awareness and education. The themes need to be focused are enlisted in **Table 7.20 of Chapter 7.** The estimated budget for the implementation of this act is Rs.20 lakhs. Table (i) gives the breakup of the budget.

g) Sustainable use of rare resources

Paris polyphylla- this rare wild tuber or rhizome was observed to be overexploited every year by the village youth to make quick and easy money. Extensive collection of cane with the help of labour force from Nepal was observed during the field survey. Exploitation without knowing the status of the resource, its potential and productivity, will lead to over exploitation and diminishing / decrease of the resource. Hence, the actions suggested in **Table 7.21 of Chapter 7**, which include awareness of the nature of this tuber/rhizome among the locals and the issue of over exploitation; would help in sustainable use of such rare and highly commercial resources. The estimated cost for this particular action is Rs.36 lakhs (Table (i) provides the breakup of this budget).

h) Issues related to Migrants, workers on Biodiversity and Culture Values

1. Illegal Resource Collection and Hunting

One of the impacts of project on natural resources is its depletion and conflicts that would arise due to sudden increase of 150% of local population because of migrant population, i.e., project associated work force. Their illegal activities in the form of collection of forest resources like; wood and bamboo, poaching and hunting is expected to increase pressure on the natural resources by many folds. Hence, the earlier suggested awareness education programme, very strict enforcement of anti-poaching mechanism, can only help in stopping the hunting associated impacts (**Table 7.22 of Chapter 7**). Total cost for implementing this action is Rs.12 lakhs (Table (i)) and will be done through VNRC & EDC with NGO involvement.

2. Cultural Issues

Other impacts related to migrant population are, influence on cultural values, women safety, unnecessary involvement in the tribal community (Idu mishmi's) matters, illegal stay, etc. Therefore, these issues need to be monitored and settled in diplomatically. The ways of handling the issues are discussed in **Table 7.22 of Chapter 7.** Cultural issues being sensitive should be tackled by forming well-informed stakeholders Cultural Issue Committee – CIC and settled through the local legal forum among the village heads and project proponent heads – Public Relation Officer. Judiciary person can be

part of this Cultural Issue Committee – CIC. This should be linked with EDC and the suggested actions need be strictly implemented for which the estimated cost is Rs.13 lakhs (Table (i)).

RESEARCH AND MONITORING:

It is important to monitor the ecology and behaviour of fauna and their habitats due to the proposed project, further it is also important to evaluate the effectiveness of this plan on biodiversity. Therefore, the following research and monitoring programmes are recommended:

The monitoring projects are for:

- Monitoring of Aquatic habitat and species of benthic invertebrates and fishes, and other aquatic species along Dri, Tangon and Dibang (below confluence 3-5 km stretch) for five years.
- Monitoring of bird fauna in and around the Etalin HEP Study Area for minimum of three years covering different seasons is recommended to get a better understanding of their status and conservation problems.
- Ecological survey of the Orchids, Pteridophytes, Lichens, and other lower plants for minimum two years, is of prime importance as to know their status, distribution and conservation problems.
- Status survey of *Paris polyphylla* an overexploited, patchily distributed, economically important plant species in and around the Project study area.
- Monitoring of small mammals using camera traps in the Etalin HEP Study Area for minimum of two years is also another important aspect of biodiversity.
- Two years' study on the resource use, availability and means of extraction by local communities needs to be undertaken to get a better understanding of their resource needs and deriving management and sustainable use norms.
- Tracking tiger movements in the region.

All these research and monitoring studies should be long term projects i.e for minimum of three to five years. This would help to develop habitat/site, species /species group, and natural resource specific monitoring protocol which is very important for the long-term conservation of the biodiversity in such a mega developmental project.

			Yearly Brea	Yearly Break up - Five Years	ſS		Sub-Activity	Main Activity
0.NO	Activities / Actions	1	2	3	4	5	Total	Total
7.4.1	Compensatory afforestation *							
A	Nursery Development & Maintenance 2 no.							* A total of 26.23 Cr
В	Seed Collection							nas peen puugeteu as cost of
ပ	Nursery Water Supply & maintenance							afforestation as part of the
D	Plantation & Maintenance							Compensatory Afforestation
ш	Site Preparation - Afforestation Plot (including Protection)							Programme under
ш	Consultant - Nursery and Plantation Techniques (Training & Guidance) + (travel)							une Exmr (1.22). 50 this activity may be covered under EMP ensuring that all the subactivities are carriedout
7.4.2	Green shelterbelt- Phyto remediation – Dust and Gaseous emission							12,00,000
A	Plantation & Maintenance - include protection)	8,00,000	1,00,000	1,00,000	1,00,000	1,00,000	12,00,000	
7.4.3	Muck-dump management and Restoration *							* A total of 114.73
۲	Plantation & Maintenance (include Protection)							budgeted as cost relocation and rehabilitation of excavated material under the EMP (7.5). So this activity may be covered under EMP.
7.4.4	Technical and Managerial Interventions – Noise and Vibration *							* A total of 50 Lakhs has been budgeted as cost of Noise Mitigation and Management under the EMP (1.4.1.9). So this activity may be covered under EMP.
7.4.5	Technical and Regulatory Mechanism –							

Table (i) Budget Layout for the Implementation of the Biodiversity Management and Wildlife Conservation Plan of the Etalin HEP Study Area

Wildlife Conservation Plan

ETALIN HEP

			Yearly Bre	Yearly Break up - Five Years	rs		Sub-Activity	Main Activity
01.0	Activities / Actions	-	2	3	4	5	Total	Total
A	Road Mortality of wildlife							19,00,000
A	Awareness to Drivers & others	2,00,000					2,00,000	
В	Preparation and Installing Signages – Awareness	15,00,000	50,000	50,000	50,000	50,000	17,00,000	
7.5.1	Species Group conservation plan – Habitat/ Niche development.							
7.5.1.1	Butterfly Parks - 5 No (1-2 ha each)							1,30,00,000
A	Consultant - Guidance & Training in Developing the parks & trainings support staff (6 months)	6,00,000					6,00,000	
В	Head Gardener - 2 nos. (Care & Maintenance)	2,40,000	2,40,000	2,40,000	2,40,000	2,40,000	12,00,000	
ပ	Assistant Gardner - 10 nos. (Help Head Gardener	8,40,000	8,40,000	8,40,000	8,40,000	8,40,000	42,00,000	
D	Development of Park (Garden including Fencing + plantation)	50,00,000	5,00,000	5,00,000	5,00,000	5,00,000	70,00,000	
7.5.1.2	Reptile Park – Habitat / Niche- 2 Nos. 5 ha each							48,56,000
A	Consultant - Expertise in Herpetofauna	4,00,000					4,00,000	
В	Setting up parks including protection + artificial burrows + seed sowing grass, herb, runners, shrubs	30,00,000	2,00,000	2,00,000	2,00,000	2,00,000	38,00,000	
ပ	Setting up walk way (To be planned & laid before dumping rocks and boulders)	2,00,000	25,000	25,000	25,000	25,000	3,00,000	
D	Incorporation of Waste wood	2,00,000					2,00,000	
ш	Security Guard – Stop Trespassing	78,000	78,000				1,56,000	
7.5.1.3	Facilitating & Enhancing Nesting Niche							
A	Consultant -Technical inputs, Guidance, Training on Cavity Nesting Bird identification, installation & monitoring of Nest Box							* A total of 50 Lakhs has been budgeted as cost of habitat improvement for
В	Making of Nest Boxes Different Size (total 400 boxes)							avifauna under the EMP (1.3.2.2). So
ပ	Installation & Maintenance							this activity may be
D	Monitoring of Nest Box - Biologist							ensuring that all the

Wildlife Conservation Plan

ETALIN HEP

			Yearly Bre	Yearly Break up - Five Years	rs		Sub-Activity	Main Activity
01.0	Activities / Actions	-	2	3	4	5	Total	Total
Ш	Field Assistants - 2							subactivities are carriedout
7.5.2	Habitat Rehabilitation and Restoration –RET Species							50,25,000
Α	Mine Dump Restoration Expert (including travel) @ Rs.1.2 lac per month for 4 months	6,00,000	2,00,000				8,00,000	
В	Setting up the Mine Dumps & other post construction phase project land use area & Preparation for Plantation	12,00,000	1,00,000	1,00,000	1,00,000	1,00,000	16,00,000	
ပ	Nursery & Plantation (Planting and Maintenance including watering)	12,00,000	2,00,000	2,00,000	2,00,000	2,00,000	20,00,000	
D	Labour charges for maintenance - 5 persons 0n daily wage basis	4,00,000	75,000	75,000	75,000		6,25,000	
7.5.3	Threatened Floral Conservation Plot- TFCP (2-3 ha)							29,40,000
A	Collection of Seeds	1,50,000	50,000	50,000			2,50,000	
В	Nursery Maintenance (including labour)	2,00,000	50,000				2,50,000	
ပ	Site preparation + Planting + maintenance (watering and de-weeding)	7,50,000	1,00,000	50,000	50,000	50,000	10,00,000	
D	Head Gardener - 1 nos. (Care & Maintenance)	1,20,000	1,20,000	1,20,000	1,20,000	1,20,000	6,00,000	
ш	Assistant Gardner - 2 nos (Help Head Gardener	1,68,000	1,68,000	1,68,000	1,68,000	1,68,000	8,40,000	
7.6	Aquatic Habitat and Biodiversity Conservation – New Roads & Existing Road Expansion							1,03,00,000
Α	Waste Debris Management System – Habitat Quality – Restoration	65,00,000	15,00,000				80,00,000	
В	Nursery Development & Maintenance	8,00,000					8,00,000	
ပ	Plantation & Maintenance	12,00,000	2,00,000	1,00,000			15,00,000	
7.7	Natural resource and life quality enhancement							2,05,00,000
7.7.1	Grass and leaf fodder plots for Mithun							
A	To be done on need basis - through VNRC & EDC (Seed Money) lump Sum (all inclusive)	75,00,000	25,00,000				1,00,00,000	

lan
С.
tion
rvat
ISer
Sol
ife
VildI
\sim

ETALIN HEP

			Yearly Bre	Yearly Break up - Five Years	ars		Sub-Activity	Main Activity
01.6	Activities / Actions	-	2	3	4	5	Total	Total
7.7.1	Bamboo plantation							
В	To be done on need basis - through VNRC & EDC (Seed Money) lump Sum (all inclusive)	50,00,000	20,00,000				70,00,000	
7.7.1	Wild edible plant garden							
ပ	One in each village - to be done - through VNRC & EDC (Seed Money) lump Sum (all inclusive)	25,00,000	10,00,000				35,00,000	
7.7.2	Life Quality Enhancement *							
7.7.2.1	Providing job opportunities (involved in jobs to be created in the project and also in the implementation of BMCP							
7.7.2.2	Create Income generation sources /options							
A	Capacity building in making crafts - improve skills (To be done under EDC program)							* This activity may be taken as per the proiect's R& R
В	Seed money as Loan for setting up / improving business, developing fruit orchards (Under Purview of EDC) – part of livelihood enhancement							Plan ensuring all the subactivities are covered
7.7.2.3	Improved Health Care & Education- part of CSR							
A	Improved Health Care							
в	Improved education facilities -							
ပ	Encourage sports and games -							
7.7.3	Peoples' Biodiversity Register & Awareness Education Programs							40,00,000
7.7.3.1	People biodiversity Register							
A	NGO to be involved (take assistance / help of VNRC)	25,00,000					25,00,000	
7.7.3.2	Awareness - Sustainable Resource Use & Regulation on Hunting of Wild animals							
۷	NGO to be involved - Developing Protocol & Awareness Program (assistance of VNRC & EDC)	10,00,000	5,00,000				15,00,000	

19

S.NoActivities / Actions7.7.4Sustainable Use of Rare Resource - Paris polyphylla and CaneAAwareness on sustainable useBUnderstand the distribution, threats and resource potential of Paris polyphylla and CaneCExperiment - growing P. polyphylla in ex-situ village land including management7.7.5Issues related to Migrants on Biodiversity and Culture ValuesAAnti-poaching MechanismBSignages on effects of hunting and significance of conserving biodiversityBStakeholders Interaction - Cultural Values - CIC & B			Yearly Brea	Yearly Break up - Five Years	Irs		Sub-Activity	Main Activity
	Activities / Actions	1	2	3	4	5	Total	Total
	se of Rare Resource - Paris polyphylla							36,00,000
	sustainable use	4,00,000	1,00,000	1,00,000			6,00,000	
	e distribution, threats and resource is polyphylla and Cane	6,00,000	6,00,000	3,00,000			15,00,000	
	rrowing P. polyphylla in ex-situ village land gement	10,00,000	5,00,000				15,00,000	
	to Migrants on Biodiversity and s							25,00,000
	Mechanism							
	ough VNRC & EDC & NGO							
	fects of hunting and significance of diversity	12,00,000					12,00,000	
	Interaction – Cultural Values - CIC &	3,00,000	3,00,000	2,00,000	2,00,000	3,00,000	13,00,000	
7.8 ESA- Research and Monitoring	h and Monitoring	1,60,00,000	60,00,000	60,00,000	60,00,000	60,00,000	4,00,00,000	4,00,00,000
Total		6,43,46,000	1,82,96,000	94,18,000	88,68,000	88,93,000	10,98,21,000	10,98,21,000

Ten Crores Ninety Eight Lakhs Twenty One Thousand Only

CHAPTER 1: Introduction

The state of Arunachal Pradesh is the land of rising sun, covering mountains, forest and rivers with highly diverse ethnic population in the country. It is a primarily hilly tract nestled in the foothills of Himalayas. It has wide variation in the topography, which is characterized by mountainous ranges and sub-mountainous terrains along the northern parts. The entire territory forms a complex hill system with varying elevation ranging from 50m in the foot-hills and gradually ascending to about 7000m, traversed throughout by a number of rivers and rivulets (http://www.arunachalpradesh.gov.in/bio-diversity/).

The climate in Arunachal Pradesh ranges from sub-tropical to temperate depending upon the altitude. The regions in the lower belts experience hot and humid climate, with a maximum temperature in the foothills reaching up to 40°C (during the summer). The average temperature during winter ranges from 15 to 21°C, while that during the monsoon season remains between 22° and 30 °C. The areas around the middle belt of Arunachal Pradesh experiences micro-thermal climate, hence are relatively cooler, while an alpine climate prevails in the higher altitudes of the state. Rainfall within the state varies from 1000mm in higher reaches to 5750mm in the foot-hill areas, spreading over 8-9 months excluding the drier days in winter.

The state is drained by several rivers and streams, which originate in higher Himalayas and Arakan Ranges and flow down to form the tributaries of Brahmaputra. Dibang, Kamla, Kameng, Kamplang, Lohit, Noa-Dihing, Siang, Siyum, Subansiri and Tirap are some of the major rivers. The mightiest of these rivers is Siang, called the Tsangpo in Tibet, which becomes the Brahmaputra after it is joined by the Dibang and the Lohit in the plains of Assam (Department of Environment & Forests, Govt. of Arunachal Pradesh -http://arpenvis.org.in/Biodiversity1.htm). The continuous flow of these rivers and rivulets have led to the formation of the broad valleys, which are typical physical features within the state.

1.1 Hydropower potential of Arunachal Pradesh

India ranks fifth in the world in terms of its hydropower potential (148,701MW installed capacity), most of which is contributed by Indian Himalayan Region (IHR; 75%), also known as the water tower of the Earth. The IHR, one of the most important mountain ecosystems of the world, ranges from Arunachal Pradesh in the east to Jammu and Kashmir in the west. Four Himalayan states namely Arunachal Pradesh, Himachal Pradesh, Uttarakhand and Jammu & Kashmir are called 'Power Banks' of India as they carry the lion's share (about 80%) of hydropower potential in India. Given the untapped hydropower potential and the surging energy demand of the country, the Government of India (GOI) has embarked on a fast-track dam-building program. Over the next several decades, the GOI aims to construct 292 dams throughout the Indian Himalaya, doubling current hydropower capacity and contributing ~6% to projected national energy needs by 2030 (Kumar & Katoch, 2014).

The State of Arunachal Pradesh has the largest hydropower potential (~50,000 MW), constituting about 34% of the country's total hydropower potential (Kumar & Katoch, 2014). The state is a part of Eastern Himalayan Ranges and is the most northeastern-most state of the country. It is uniquely situated in the transition zone between Himalayan and Indo-Burmese regions. It has five major river basins namely Dibang, Kameng, Siang, Lohit and Tirap, which form the basis of the vast hydropower potential of the state. Of the state's hydropower potential, only 405 MW has been identified as capacity under operation, while 2,854 MW has been categorised as capacity under construction

(The Hindu, 2017). Under the Prime Minister's 50,000 MW hydropower initiatives, the Ministry of Power, Government of India have identified 89 projects in Arunachal Pradesh. The Preliminary Feasibility Reports (PFRs) in respect of 42 projects having installed capacity totalling 27,293 MW (approx.) have already been prepared (State Hydropower Policy, 2008).

As per the information provided by the Power Department, there are 18 hydropower projects in Dibang basin, out of which 14 hydroelectric projects (HEPs) have been allotted and remaining 4 are yet to be allotted. Apart from the projects on the main river, hydropower projects are planned on all major tributaries and sub-tributaries with installed capacity ranging from 22 MW to 3097 MW. Of these, the largest project is the Etalin HEP (3097MW) which envisages diversion of two rivers - Dri/Dibang (installed dam capacity 1861.6MW) and (Tangon) Talo (installed dam capacity 1235.4MW) in the Dibang Valley of Arunachal Pradesh.

1.2 Biodiversity status of Arunachal Pradesh

Arunachal Pradesh, situated in the Eastern Himalayan biotic province, is part of the Himalayan biogeographic zone (Rodgers et al. 2002). It is among the 200 globally identified important eco-regions, which is to promote the conservation of terrestrial, freshwater, and marine ecosystems harbouring globally important biodiversity and ecological processes. (Olson and Dinerstein 1998). Conservation International has listed its eastern Himalaya "hotspot" into a wider Indo-Burma hotspot, which now includes all the eight states of northeast India along with the neighbouring territories of Bhutan, southern China, and Myanmar (Myers et al. 2000). This state, due to its location at the trijunction of the Paleoarctic, indo-Chinese, and Indo-Malayan bio-geographic regions, nesters ecological conditions and biotic elements from all these regions, making it very rich in floral & faunal resources, with a high level of endemism.

Although the major part of the state is covered with dense forests, the protected area network includes only 11.68% of the forest cover of the state, with two National Parks (2290.82 sq.km / 2.74%) and 11 Wildlife Sanctuaries including one Orchid Sanctuary (7487.75 km² / 8.94%). Furthermore, the biodiversity of the state is preserved in three Tiger Reserves (TR) viz., Namdapha TR (2052.82 km²), Pakke TR (1198.45 km²) and Kamlang TR (783 km²) and one Biosphere Reserves – Dehang – Dibang (5111.50 km²) (Wildlife Institute of India Data Base - 2018).

Habitat diversity

The phytogeographical position, irregular and undulating topography with high hilly ranges and deep valleys accompanied by wide variation of climate and soil have resulted in the formation of varied ecological diversity, which has influenced the rich and diverse vegetation in Arunachal Pradesh (Baishya et al. 2001). The vegetation is classified into five major categories, viz., tropical, subtropical, temperate, sub-alpine and alpine vegetation, and each category comprising subtypes, that is primarily based on altitude and climatic factors (Baishya *et al.* 2001). The Tropical vegetation include Tropical Evergreen Forests, Tropical Semi-evergreen Forests, low hills and plains Semi-evergreen Forests and Riverine Semi-evergreen Forests. The Subtropical vegetation comprise Subtropical Broadleaved Forests and Subtropical Pine Forests. The Temperate vegetation comprised the Temperate Broadleaved Forest and Temperate Conifer Forest. The Alpine and Subalpine Forest did not comprise any subtypes. The sixth type of forest identified was secondary forest (subtypes - degraded forest, bamboo forest and grasslands, (Kaul and Haridasan 1987)), which is the result of various biotic and abiotic

factors. Further, the region's lowland and montane moist to wet tropical evergreen forests are considered to be the northernmost limit of true tropical rainforests in the world (Proctor, Haridasan, and Smith 1998). These six forest types are spread over an area of 66,964 sq. kms, which is about 79.96% of the total geographical area (83,743 sq.kms) of Arunachal Pradesh (FSI 2017). This include, 20,721 sq. kms very dense, 30,955 sq.kms moderately dense and 15,288 sq.kms open forest. The forest cover within and outside green wash area (wooded areas generally shown in light green on SOI toposheets), is 51,407 sq.km, which is 61.39% of the geographic area of the state. Of this, Reserved Forests formed 20.06%, Protected Forests 19.02% and Unclassed Forests 60.38% (FSI 2017).

Floral Diversity

Arunachal Pradesh is considered to be luxuriant in floral diversity, having the highest diversity among the NE states and has been recognized as the 25th biodiversity hotspot in the world (Chowdhery, 1999). It is estimated that over 5000 species of flowering plants, of both vascular and non-vascular origin, occur in this region. In addition to having high diversity of flowering plants, the state harbours habitats and microhabitats for 400 species of pteridophytes, 23 species of conifers, 35 species of bamboos, 20 species of canes, 52 Rhododendron species & more than 500 species of orchids (Department of Forests & Environment, Government of Arunachal Pradesh - <u>http://arunachalforests.gov.in/</u>), with high endemism in higher plant diversity totalling to about 238 species. Orchids are often associated as the "Jewels of Arunachal Pradesh" (**Biodiversity of Arunachal Pradesh - <u>http://arunachalforests.gov.in/</u>). The state is also rich in agrobiodiversity and has been a centre of origin for a number of crop plant species. It is the region's storehouse of medicine plants, harbouring a high diversity of about 500 species.**

Faunal Diversity

The taxonomic richness is well represented across different groups ranging from plants, animals, birds, amphibians, reptiles, insect and fishes. The State harbours 20% species of country's fauna, with a very high diversity of invertebrate fauna. The faunal diversity of the Eastern Himalayas, of which Arunachal state form the major part, harbours a diverse assemblage of invertebrates. The prominent invertebrates like butterflies and moths that are known for their ecological service were represented by 713 species of butterflies (47% of butterfly species reported in India) (Das et al. 2018) and 235 species of Moths (Sanyal et al. 2018) respectively. Among the vertebrates, fishes were represented by 259 (Gurumayum *et al.* 2016), amphibians 59, reptile 108 species, avifauna 539 and 154 mammal species (Chandra et al. 2017). Out of 16 primates in the world, seven are found in Arunachal Pradesh. The high endemic and restricted species richness in the eastern Himalayas, has made it one of the high faunal diversity hotspots. Thus, this region is aptly considered as one of the 200 globally important ecoregion, and a part of the Indo-Burma global Biodiversity hotspot (Olson and Dinerstein 2002; Maheswaran, 2012).

Ethnic Diversity

The total human population of 1.38 million, at a density of 17 persons/ sq.km, include 77.06% living in rural areas and remaining are urban population (Census 2011). The total population in the state lives in 3649 villages and small towns. There are in total 1.41 million livestock population in the State (Census 1991). The state has 26 major indigenous groups and 110 sub-groups, 80 of whom are primarily agriculturalists, practicing shifting cultivation on community owned lands. It is unique in having

traditional rights of various tribes over land, water and forest within their jurisdiction. Each tribe as a community exercise control over the natural resources within their surroundings, inhabited traditionally by them, and sustainable use of the resources for shelter, cultivation, food and other day to day multifarious uses. More than half of the forests come under the control of the indigenous people. According to tribal beliefs in Arunachal Pradesh, dense forests and big trees are looked upon as ancestral souls, and hornbill hunting is banned during the breeding season. The tiger is sacred as it considered as the 'brother of Tani, the first humans on earth'. Livelihoods of local people have been closely linked and heavily dependent on forest resources since time immemorial. Medicinal plants have come to the rescue of communities, and hence they vigorously guard against the removal of plant and animal species by outsiders. These traditional practices and self-law have paved way to the preservation of the high biodiversity of the area.

Threats to Biodiversity

Large tracts of forest had been lost in Arunachal due to development of pastoral lands, agriculture expansion, shifting cultivation and demand for firewood and timber and construction of hydropower dams. However, with increasing population, development activities, large number of wood-based industries and unsustainable land use practices like jhuming, the pressure on forest resources is consistently increasing leading to their degradation affecting regeneration and productivity. However, of late, forests have been adversely affected by several factors, which include rapid increase in human & livestock population, insufficient infrastructure, and diversion of forest areas for development activities (Department of Forests & Environment, Government of Arunachal Pradesh).

1.3 Overview of hydropower impacts on the biodiversity of AP

a) General overview

Despite being a clean energy source, the impact of hydropower dams and associated activities (e.g., road construction, muck disposal) on the structure, function and ecology of rivers and their floodplains is widely acknowledged. Dams can have cumulative effects many hundred kilometres downstream and upstream of the barrier (Grill et al., 2015). Two biggest impacts of dams on rivers are flow alteration and river fragmentation. Dams act as barriers to river connectivity by altering natural flow and flood regimes of a river. The river flow alteration due to dams has been identified as one of three leading threats to aquatic species (Richter et al. 2003). Disruptions in the natural flow regimes result in physical, chemical, and biological changes within the impoundment which extends downstream of dams as well. Modified flow regime alters thermal regimes, reduces sediment delivery to floodplains and deltas, reduces habitat complexity, alters water quality, and changes river and floodplain morphology, all of which have ecological consequences (Csiki & Rhoads, 2010; Grill et al., 2015; Fantin-Cruz et al., 2015; Sow et al., 2016). The life cycle, distribution, diversity and population dynamics of aquatic organisms such as fishes, macroinvertebrates and aquatic plants, and riparian species are largely governed by the natural variability in different components of the flow regime (e.g., magnitude, timing, duration, frequency) (Bunn & Arthington, 2002; Poff et al., 2010). Altered flow magnitude, duration and frequency have been observed to result in a decline in abundance, richness and diversity of fishes, macroinvertebrates, and riparian plants, reduced habitat for young fishes, loss of sensitive and endemic species, increase in non-natives, altered seedling recruitment, territorialisation of aquatic flora and shift in community composition (Poff et al., 2010). Change in the natural flow regimes such as loss of seasonal peaks of flows can lead to disruption of spawning cues, decreased

reproduction and recruitment, change in assemblage structure and diversity, reduced riparian plant recruitment, growth, richness, cover and increased mortality, and invasion of exotic riparian plant species (Poff et al., 2010).

River fragmentation diminishes the natural connectivity within and among river systems (Branco et al., 2014). Disruption of longitudinal connectivity, i.e. linkage between upstream and downstream river sections, has severe consequences for species migration and dispersal, community structure and biodiversity patterns in river channels and riparian zones. Additionally, transport of organic and inorganic matter, energy downstream, into riparian zones and floodplains via longitudinal and lateral connectivity is also significantly impacted (Grill et al., 2015).

Creation of reservoirs above dams is the main contributor to flow regulation. These reservoirs act as a physical barrier to aquatic migratory species. These reservoirs may develop thermal stratification consequently altering thermal regimes, disrupt sediment and nutrient delivery to downstream areas by trapping sediment within the submergence area, and cause geomorphological changes in channels and floodplains (Fantin-Cruz et al., 2015), thereby altering habitats of riverine and riparian species. Since water levels in the submergence area are generally elevated above natural stream levels, it floods the terrestrial-aquatic interface, creating a new littoral habitat with steep banks, simpler aquatic habitat and different physicochemical conditions for aquatic plants and animals. Conversion of lentic habitat to a lotic habitat can lead to dominance of lotic aquatic species over the native free-flowing species thereby altering the natural distribution patterns of aquatic biota and enhance the spread of pests and diseases (Bunn & Arthington, 2002).

Dam impacts of river structure and function such as flow alteration, river fragmentation and submergence not only effects aquatic and riparian species but terrestrial species as well. Forest loss due to submergence or poor longitudinal and lateral river connectivity negatively impacts terrestrial species such as mammals, birds, herpetofauna dependent on such habitats (Pandit & Grumbine, 2012). Additionally, loss of river meso-habitats such as islands, sand bars also impact riverine species dependent on them e.g., river birds, reptiles. Dams indirectly impact terrestrial/riverine species by affecting aquatic food sources such as fishes, macroinvertebrates.

Other activities associated with dam construction and operation such as road construction, installation of buildings, muck disposal, entail forest acquisition and land-use change, thereby causing loss of habitats, migratory pathways, corridors for terrestrial species (Pandit & Grumbine, 2012). Activities such as road construction, muck disposal into rivers also impact river water quality and morphology, consequently impacting aquatic species as well (Trombulak & Frissell, 2000).

b) Hydropower development and its impact on the biodiversity of Arunachal Pradesh

Given the large hydropower potential of the rivers in the state of Arunachal Pradesh, the GOI plans to accelerate the pace of hydropower development in the state to make it the 'future powerhouse' of the country. Arunachal Pradesh, having a rich faunal and floral diversity, has been recognized as one of the 34 global mega biodiversity hotspots (Myers et al., 2000) as well as one among the 200 global eco regions. It is also a geologically fragile area. In the light of these facts, it is apparent that the aquatic and terrestrial biodiversity of Arunachal Pradesh is in peril. The proposed hydropower development is likely to impact the habitats and the survival of several endemic and threatened terrestrial species such as the Snow Leopard, Red Panda, Clouded Leopard, Tiger, Arunachal Macaque, Black-necked crane,

Mishmi Wren, Rhododendron spp., among many others. These developments will significantly alter the river systems thereby impacting important aquatic species such as Snow Trout, Golden Mahseer and other endemic fish species such as Exostoma.

For instance, in the Tawang basin, 13 hydropower projects with total capacity of about 2890.10 MW have been planned. These projects are predicted to cause substantial loss of extremely fragile mountain ecosystems as well as the rivers. These alterations are likely to impacts several rare, threatened, endemic species of different taxa, e.g., birds such as Black-necked crane, mammals such as Arunachal Macaque, Red Panda, Capped langur, reptiles such as keeled box turtle, red-necked keelback, common mock viper, short-nosed vine snake and plants such as *Acer hookeri, Panax bipinnatifidus, Taxus wallichiana, Toricellia tillifolia.* These projects are also likely to significantly alter the water quality, water availability and the flow regimes of rivers in the Tawang river basins, consequently affecting important aquatic species like Snow Trout and endemic species of periphyton and zooplankton (NEHU, 2014).

Another example is that of the proposed 3000 MW Dibang Multipurpose Hydro-electric Project on the River Dibang. More than 5,000 ha. of biodiverse forests will be directly lost due to the project and the road to the dam site cuts through the Mehao Sanctuary. These and the adjoining forests harbour endangered species such as tiger, leopard, serow as well as the endangered takin, all of which are protected under Schedule I of the Wildlife (Protection) Act, 1972. The grasslands in the area harbour the critically endangered Bengal Florican, a grassland habitat specialist. Other species recorded from the area include the critically endangered white-rumped vulture, the slender-billed vulture and the white-winged wood duck. Approximately 32 lakh truckloads of boulders and 16 lakh truckloads of sand will be mined from the Dibang river bed and its tributaries – demarcated as an Important Bird Area (IBA) and a potential Ramsar site by the Bombay Natural History Society. Downstream propagation of impacts will affect important riverine Protected Areas such as D'ering Sanctuary and Dibru Saikhowa National Park. Additionally, the dam will disrupt migratory pathways for the Vulnerable snow trout, Endangered golden mahseer and Near-Threatened chaguni (SANDRP, 2014).

These above examples give a glimpse of the adverse and possibly irreversible impacts of hydropower development on the aquatic and terrestrial biodiversity of the state that are bound to occur without any conservation planning. The impacts of the biodiversity values and associated services will ultimately affect the social, cultural and economic condition of the human communities residing in the state. However, the actual impact due to a particular project shall be specific to the topography, reservoir capacities, its length, sedimentation and other aspects. MoEF& CC has therefore carried out basin wise studies to delineate the possible impacts from each project and accordingly have come up with projects which are feasible and sustainable.

1.4 Rationale for harmonising hydropower development and conservation planning for sustainable outcomes

Given that less than 25% of the country's hydropower potential has been tapped, hydropower is one of the potential energy sources for meeting the growing power needs (ADB, 2007; Kumar & Katoch, 2014). For developing countries like India, hydropower is an essential energy option which has significant advantages such as: being a renewable energy source, has low greenhouse gas emissions and can generate cheap electricity, flood control and provides water for drinking and irrigation (Pandit &

Grumbine, 2012). Simultaneously, available literature (see section 1.3) reveals that hydropower dams can cause substantial detrimental impacts on the functioning, ecological integrity and productivity of river systems. These impacts are multiple, complex, interactive and cumulative and can have wide-ranging effects across organisational levels (species to ecosystem), spatial scales (local to global) and temporal scales (months to decades) (Grill et al., 2015). Unplanned and unsustainable hydropower development can, therefore, result in adverse effects to the sustainability of natural resources associated with rivers and their floodplains and the wide spectrum of provisioning, supporting, regulating and cultural services provided by them.

Given this premise, it is essential to ensure that water demands for energy and irrigation do not become a cause of receding wildlife habitats and loss of biodiversity resources that may ultimately become compounding factors for accelerated impoverishment of natural resource dependent people. Focused efforts need to be made to protect and prevent loss of habitats, biodiversity and ecological integrity, while still addressing human needs. Development of water resources in a sustainable manner is therefore essential for the continued improvement in the quality of life for humans (Rajvanshi et al., 2012).

Mainstreaming biodiversity conservation into hydropower development offers an efficient and a scientific framework for achieving these goals. Conservation planning address biodiversity conservation by identifying key biodiversity areas (KBAs) and species and implementing appropriate conservation actions (Margules and Pressey, 2000; Nel et al., 2009; Linke et al., 2011; Rajvanshi et al., 2012). It also acknowledges that protecting all areas is impossible in a world of competing human interests and aims to curtail the loss by prioritising conservation areas in a spatially efficient-manner. Quantitative conservation targets such as number and frequency of river /forest types, or species occurrences, or occurrences of rare and endangered species, are a defining characteristic of conservation planning (Nel et al., 2009). Assessing impacts and threats of development projects directly informs conservation strategies, management options and priorities for conservations actions.

CHAPTER 2- Environmental and Technical Considerations

2.1 Project Background

The Etalin Hydro Electric Power Company Limited (EHEPCL) has developed a proposal for 3097 MW Etalin Hydroelectric Power Project (HEPP) in Dibang Valley district of Arunachal Pradesh. The project envisages utilization of waters of Dri and Tangon (also known as Talo) rivers for hydropower generation. The two rivers are tributaries of Dibang River and confluence near Etalin village.

After completing the scope laid out in terms of reference (TOR) for conducting Environment Impact Assessment & Environment management Plan, the project was recommended by Expert Appraisal Committee (EAC) for environmental clearance in its meeting of January 2017. The project was discussed during Feburary 2017, in Forest Appraisal Cmommittee (FAC) for consideration of Stage-I clearance wherein it was advised to Govt. of Arunachal Pradesh to conduct a multiple seasonal Replicate studies from an Internationaly acclaimed Institute. In accordance with the recommendations of "Forest Advisory Committee" (FAC), MoEF&CC and letter no. FOR-279/CONS/2010/VoI-I/836-40 dated 23rd June, 2017 from APCCF & Nodal Officer (FCA), Arunachal Pradesh to Director, Wildlife Institute of India, Dehradun (Annexure-I), a multiple seasonal replicate study on Biodiversity assessment of the project is required to be conducted. The primary scope of the WII study will be to prepare Biodiversity profile of the study area both through field survey as well as through review of published literature and suggest measures for species conservation and management.

2.2 Objectives of the study

In response to this directive, the Wildlife Institute of India submitted a technical proposal to the Department of Environment and Forests, Government of Arunachal Pradesh, for undertaking the desired study. The primary objectives of the study are:

- a) To determine the current status of wildlife habitat and distribution pattern of plants, entomofauna, fish, herpetofauna, birds and mammals within the impact zone of the Etalin hydroelectric project (EHEP) area covering multiple seasons.
- b) Status and distribution pattern of certain 'Rare, Endangered and other Threatened (RET) species in the impact zone of the EHEP.
- c) Identification of critical habitats, wildlife corridors and migratory paths of RET species in the impact zone.
- d) Assessment of the likely impacts due to the construction and operation of the EHEP and associated activities on flora, fauna and their habitats.
- e) Develop a Wildlife Conservation Plan in order to avoid/mitigate likely hydropower impacts and conserve key biodiversity areas and species.

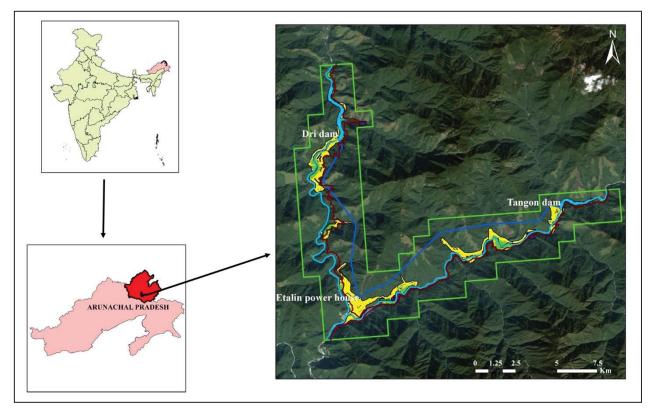
2.3 Scope of work and implementation schedule

Based on the objectives of the study, an elaborate scope of work was developed to generate information relevant for developing information and knowledge base with reference to the different biological components included within the purview of consideration for this study. Table 2.1 provides an overview of the specific thrust areas and the tasks envisaged.

No.	Study Components	Scope of Work
1.	Vegetation	• Generation of baseline data of plants in the zone of influence (ZoI) of the EHEP.
		 Identification of species of conservation significance (SCS) i.e. RET species, endemic species and Schedule-I species (IWPA, 1972) and their habitats.
		 Identify key biodiversity areas (KBA) on the basis of faunal richness and presence of SCS, particularly in the immediate impact zones of hydropower activities (dam location, submergence area, land-acquisition areas for dumping, quarrying, establishment of colonies etc.).
		 Assessment of likely impacts of hydropower development on vegetation composition and habitat quality.
		• Define conservation priorities and plans for addressing threats to SCS and important plant communities within the study area.
2.	Terrestrial	 Generation of baseline data of entomofauna (butterflies, moths, dragonflies, spiders), herpetofauna, birds and mammals in the zone of influence (ZoI) of the EHEP.
		 Identification of species of conservation significance (SCS) i.e. RET species, endemic species and Schedule-I species (IWPA, 1972) and their habitats.
		 Identify key biodiversity areas (KBA) on the basis of faunal richness and presence of SCS, migratory/dispersal corridors, particularly in the immediate impact zones of hydropower activities (dam location, submergence area, land-acquisition areas for dumping, quarrying, establishment of colonies etc.).
		 Assessment of likely impacts of hydropower development on species distribution of SCS and KBAs.
		 Define conservation priorities and plans for addressing threats to SCS and KBAs within the study area.
3.	Aquatic	 Generation of baseline data of fishes and benthic invertebrates through survey of Dri and Tangon rivers and their tributaries within the study area Identify key biodiversity areas (KBA) within the river network by delineating zones of high fish diversity, presence of SCS, migratory pathways, and breeding sites.
		 Assessment of likely impacts of hydropower development on species distribution of SCS and KBAs.
		 Define conservation priorities and species/habitat conservation and/recovery/reintroduction plans for addressing threats to SCS and KBAs within the study area.
4.	Socio-economic	• Assess and evaluate the potential socio-economic, cultural status of the Project Affected villages of Etalin HEP project.
		 Conduct structured based interview to generate secondary sources of

Table 2.1 Details of scope of work under various components of the study.

No.	Study Components	Scope of Work
		(wild fauna & flora) that occur in the study area.
		• Identify and evaluate the potential socio-economic, cultural impacts of Etalin HEP project on the life quality (economy) and system (culture) of the people.
		• Define conservation priorities and management to enhance the life quality and conserve the custom and tradition of local communities, thereby to possibly minimise impact on biodiversity of the project area.


Table 2.2 Task completion

Tasks undertaken	Timeline
Commencement	January 2018
Inception meeting	January 2018
Complete transfer of funds to WII	As per MoU
Site visit	February-June, 2018
Internal review meeting	Monthly
Data analysis and report writing	July-September 2018
First draft of the report	September 2018
Draft final report	October 2018
Final report	May 2019

CHAPTER 3: The Study Area and Project Profiles

3.1 Ecological profile

The proposed Etalin Hydroelectric Project (EHEP) is located in the Dibang Valley district of Arunachal Pradesh (**Map 3.1**). It envisages utilization of the discharges of the rivers Dri and Tangon to generate 3097 MW of power.

Map 3.1: Project Location in the Dibang Valley District, Arunachal Pradesh

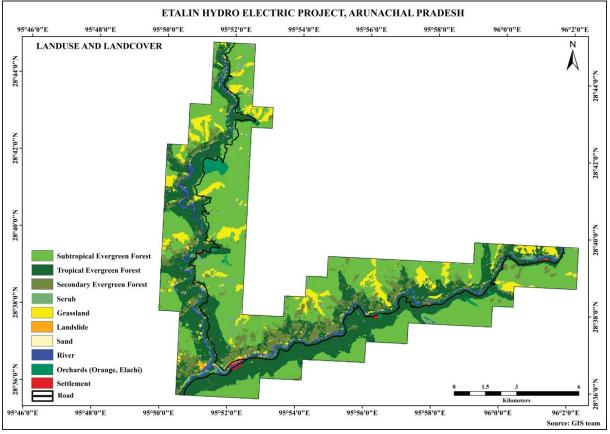
The EHEP area falls in the Mishmi Hills which are comprised of parts of districts of Upper Siang, West Siang and entire Dibang Valley of Arunachal Pradesh, India. It is a complex hill system of varying elevations and receives heavy rainfall, up to 4,500-5,000mm annually, in the foothills. The premonsoon showers start from March and the monsoon season lasts till October during which the humidity is often over 90%.

The study area is marked by the distinctive peri-glacial topography with sharp crested ridges and sculptured "whale back" hill slopes, marginal glacial features and the presence of terminal and lateral moraines. The valleys in the area are typically U-shaped. It is dominated by steep (>30% slope in about 90% of the study area) to extremely steep slopes (>70% slope in about 45% of the study area). About 72% of the study area and the catchment area of the Dri river lies between 2000 m and 4000 m, while about 15% lies above 4000m and only about 12% lies between 500-2000 m elevation. Most of the catchment area of Tangon river (57%) lies within 2000 m and 4000 m elevation band, while 36% and 6% lies above 4000m and within 500-2000 m elevation respectively. Most of the project activities are restricted to the 600-1500 m elevation zone.

Mishmi hills are part of one of the richest bio-geographic provinces of Himalaya and mega biodiversity hot spot (Eastern Himalaya - Province 2D - Rodgers and Panwar, 1988). Mountainous and

undulating topography, high rainfall, climatic variation along the elevation gradients, dense forest and sparse human population in these areas support a phenomenal range of floral and faunal diversity. The rich biodiversity of the region can be attributed to its location at junction of Palaearctic, Indo-Chinese and Indo-Malayan geographic region.

3.1.1 Dri River


Dri river is one of the major tributaries of the Dibang river, which originates at an altitude of around 5500m from the glacial range of Eastern Himalayas. During its course downstream, it merges with Mathun river and forms the Dri river; after the confluence. The altitudinal range of the area studied along this river, as part of this assessment ranged from 1800m to 700m. It flows north to south and merges with the Tangon river at an elevation of around 700m near Etalin village, the river post confluence is known as the 'Dibang' River. The total length of Dri river up to the confluence is around 110 km and its total catchment area is around 3,750 sq. km. The mean annual inflow is 331.9m³/s, resulting in a specific run-off of 2848mm/year.

Flora

The forest types spread over the Dri river are majorly; Tropical Evergreen, Tropical wet evergreen and sub-tropical broadleaved forest as per Champion and Seth (1968) classification (Forest stats 2001), and secondary evergreen forest with both banana and bamboo. There were scrub and grasslands above these forested areas (**Map 3.2**). Tree species like *Castonopsis indica, Macaranga denticulata, Engelhardtia spicata, Shrubs species; Strobilanthes spp., Psychotria monticola* and *Piper pedicellatum* and climbers; *Rhaphitophora decursiva, Tetrastigma affine* and *Piper clerki* are commonly found in the Dri river.

Fauna

Rich variety of faunal species are found along Dri river. Among the avian species, Whiskered Yuhina (*Yuhina flavicollis*), Black-chinned Yuhina (*Yuhina nigrimenta*) and endemic species such as White-naped Yuhina (*Yuhina bakeri*) are commonly found along the Dri river. Raptors like Crested Serpent Eagle (*Spilornis cheela*) and Common Kestrel (*Falco tinnunculus*) are also commonly seen. Among the mammals, Himalayan Palm Civet (*Paguma larvata*), Indian Muntjac (*Muntiacus muntjac*) and Yellow-throated Marten (*Martes flavigula*) are common in the area. Carnivores, mainly cat species; Golden Cat (*Catopuma temmincki*) and Leopard Cat (*Prionailurus bengalensis*) also occur in the region. Among the entomofauna, Tawny Angle (*Ctenoptilun vasava vasava*) Jaintia Commonflash (*Rapalamissa ranta*) and Common Jay (*Graphium doson axion*) are the common butterflies while Scarlet Skimmer (*Crocothemis servilia*) and Wandering Glider (*Pantala flavescens*) are the common Odonates along this river.

Map 3.2: Different Land Use and Land Cover categories in the Etalin HEP Project Study Area

3.1.2 Tangon River

The origin of the Tangon river is also from the Himalayas. It runs east to west, and is the drainage for many small and large tributaries, such as Noh Naala and Anon pani respectively. The total length of Tangon river from its origin to the confluence with Dri river, is about 91 km. Its total catchment area is around 2,500 sq. km. The mean annual inflow is 211.4 m³/s, resulting in a specific run-off of 2598 mm/year.

Flora

Same forest types as found in the Dri river (Tropical evergreen and tropical wet evergreen and Sub-tropical broadleaved forest), are found in the Tangon river. Tangon river is slightly richer in terms of plant richness then Dri river, due to comparatively less disturbance. Tree species like *Castonopsis indica, Ficus semicordata and Diploknema butyraceoides*; shrub species, *Piper pedicellatum, Rhynchotechun ellipticum* and *Psychotria monticola*; and Climbers such as *Rhaphitophora decursiva, Tetrastigma affine* and *Rhaphitophora hookeri* are the most common floral species found along the Tangon river.

Fauna

Tangon river also has a rich variety of faunal species. Among the avian species, Orange-bellied Leafbird (*Chloropsis hadwickii*), Yellow-bellied Fantail (*Chelidorhynx hypoxantha*) and Rufous-breasted Bushrobin (*Tarsiger hyperythes*) are the common species, and species like Black-capped Kingfisher

(*Halcyon smyrnensis*), Asian Emerald Cuckoo (*Chrysococcyx maculatus*) and Himalayan Cuckoo (*Cuculus saturatus*) were commonly seen during the summer seasons. Among the Mammal species; Himalayan Palm Civet (*Paguma larvata*), Indian Muntjac (*Muntiacus muntjac*) and Yellow-throated Marten (*Martes flavigula*) are common in the region, while Himalayan Black Bear (*Ursus thibetanus*), Himalayan Serow (*Capricornis thar*), Leopard Cat (*Prionailurus bengalensis*), Assam Macaque (*Macaca assamensis*) and Brush-tailed porcupine (*Aherurus marcourus*) are also found along the Tangon river. Among the entomofauna, Paris Peacock (*Papilio paris paris*), Great Nawab (*Charaxes eudamippus eudamippus*), Indian Cabbage White (*Pieris canidia indica*) are the common butterflies in the area, while Blue-tailed Forest Hawk (*Orthetrum triangulare*) and Blue Marsh Hawk (*Orthetrum glaucum*) are the common Odonates in the area.

3.1.3 Dibang River

The Dibang river forms a tributary to the Brahmaputra river and it originates after the confluence of the Dri River and the Tangon river near the Etalin village Headquarters. It has seven major tributaries; Dri, Tangon, Mathun, Eme, Ahi, Emra and Awa (Government of Arunachal Pradesh profile) and terminates into the Lohit river by merging with it near Sadiya which falls in the district of Tinsukia in the state of Assam. Between Emewu (Nizamghat) and Sadiya, the Dibang has a steep river gradient and exhibits braided channel morphology with its width varying from 4 to 9 kilometres (2 to 6 mi). It has a total length/course area of 195km. The Dibang river also lends its name to the District; Dibang Valley district.

3.1.4 Sociology of Dibang valley

Idu Mishmi is the dominant tribe of Dibang valley and are traditionally food gatherers from the wild, therefore are heavily dependent on forest resources for their subsistence. They follow animism and apart from NTFP collection, their major source of income is forest based agriculture wherein shifting cultivation (Jhum cultivation) is practiced.

According to the 2011 census, the Idu Mishmi population is estimated to be approximately 8004 in Dibang valley with an average literacy rate of 64.1% which makes the district the least populated district in the country. The Idu mishmis have their own set of cultural beliefs which they follow before/after varied activities.

3.2 Project Profile

The EHEP (3,097 MW) is a run-of-the-river project which envisages constructing two concrete gravity dams namely (i) a 101.5 m high dam on the Dri river near Yuron village about 22 km from Etalin and (ii) a 80 m high dam on the Tangon river about 800 m downstream of Anon Pani confluence with Tangon river (from the deepest foundation). The water will be diverted via two separate waterway systems to utilize the available head in a common underground powerhouse located just upstream of the confluence of the two rivers. The underground powerhouse is proposed with 10 units of 307 MW each. In order to utilize the releases of flow for sustenance of aquatic life, a dam - toe powerhouse with 19.62 MW capacity on Dri diversion and dam-toe powerhouse with 7.40 MW capacity on Tangon diversion have been proposed.

For this project, a total of 1,155.11 ha of land is required which would be acquired for construction of project components, submergence area, muck dumping, quarrying, construction camps

and colony, etc. The total submergence area due to the dams will be 119.44 ha. A total of 18 villages consisting of 285 families will be affected by the proposed project. The estimated cost of the project is Rs. 25,296.95 crores and it is proposed to be completed in 7 years. The salient features of the project are given in **Table 3.1**.

Project Features	Dri River	Tangon river
Dam Height (m)	101.5	80
FRL (m)	EL1045	EL1050
Gross Storage at FRL	21.97 MCM	6.15 MCM
Submergence Area (Ha)	83.32	36.12
Head race tunnel (HRT)	Diameter:11.3m; Length:10722m	Diameter:9.7m; Length:13045m
Tail race tunnel (TRT)	Diameter:11.3m; Length:555m	Diameter:9.5m; Length:544m

Table 3.1 Salient features of the I	Etalin Hydroelectri	c Project	(EHEP)
-------------------------------------	---------------------	-----------	--------

3.3 Delineation of Zone of Influence (Zol)

The impacts due to hydropower development on terrestrial and, particularly, aquatic ecology is spatially and temporally extensive and typically broader than the immediate project area. Given the rapid nature of the study, the study area boundaries were defined by the delineation of the Zone of Influence (ZoI) of the EHEP. The Zone of Influence is defined as the farthest possible distance of influence of the development project, emanating from various impact sources. Identification of impact sources took into consideration the activities, location and extent of (a) Dam, (b) Submergence, (c) Headrace tunnel, (d)Tailrace tunnel, (e) Muck disposal areas, and (f) Built-up areas for establishing various infrastructures including road network. The methodology for ZoI delineation is discussed in detail in **section 4.3**. A detailed insight of the study area derived based on the GIS & RS study done as part of this assessment is provided in the baseline chapter (**Chapter 5, section 5.1**).

CHAPTER IV- Approach and Methodology

4.1 Baseline data collection

The Institute's multidisciplinary team undertook surveys within the Zone of Influence (ZoI) of EHEP, particularly focusing on the immediate impact areas/zones of the hydropower and associated activities e.g., muck disposal sites, quarry areas and other land-acquisition areas. Within these selected project sites, information on different terrestrial and aquatic biodiversity components were gathered. As hydroelectric projects have a direct bearing on the habitats of both terrestrial and aquatic species, specific taxa were targeted for conducting impact assessment. Taxonomic groups that have flagship values and keystone effects, and are highly sensitive to changes in the habitat were selected for the assessment. In this study, mammals, birds, entomofauna, herpetofauna and plants were considered to represent the terrestrial system and fishes and benthic invertebrates were included to represent the aquatic system. The field surveys were conducted between February and May/June 2018, with replicates covering multiple seasons namely, winter / pre-monsoon (February-March), monsoon (April-June).

4.1.1 Terrestrial biodiversity

4.1.1.1 Flora

The proposed Etalin HEP area falls in the Mishmi Hills, one of the richest bio-geographic provinces of Himalaya (Eastern Himalaya – Province 2D – Rodgers and Panwar, 1988). The catchment area of the study area covers all the five major forest types of Eastern Himalaya, viz., Tropical semi-evergreen forests, Sub-tropical wet hill and Assam Pine forests, Wet temperate and Mixed coniferous forests, Sub-alpine, and Alpine scrubs and pastures (Champion & Seth, 1968; Roy et al., 2015). The flora within the Zol of the Etalin HEP were surveyed in order to generate baseline information and to identify key plant biodiversity areas and key plant species (RET, endemic species) using the following methods:

- a) Reconnaissance survey: A reconnaissance survey was conducted in the proposed impact zones of Etalin HEP project area, which include land acquisition areas such as, proposed quarries, dumping sites, submergence areas of both the Dri and Tangon dam sites, and other areas earmarked for infrastructure facilities (powerhouse, workshops and colony area).
- b) Vegetation sampling: Quantification of flora (Plate 4.1) was done using quadrat method following Misra (1968). At each sampling site, depending on the accessibility and availability of space, 5-12 quadrats, each of 10x10m size were laid randomly for sampling trees. In each plot, trees were identified to species level and number of individuals of each species and girth at breast height of all trees (GBH, at 1.37m) wee recorded. A plot of 5x5m was laid within the larger plot for sampling seedlings/recruitment class (10-30 cm gbh with 1ft in height) of trees following a nested study design. Within this plot, list of shrubs and climbers were enumerated. To study the ground layer (herbaceous layer) 2, 1x1m plots were laid and individuals of respective species were counted.

Specimen Identification

Extensive floristic survey/inventory was conducted along accessible trails in the forested areas as well as motorable roads. All species encountered was photographed and field notes including site description were noted down. Site description of the locality includes project land use, GPS locations, local name of the plant and its use (if known), habitat found, a brief description of the plant, and date of survey. Standard herbarium preservation and field techniques protocol given by Calabrese (2005) was followed. The unidentified specimens were confirmed to the species level at the Botanical survey of India, Itanagar.

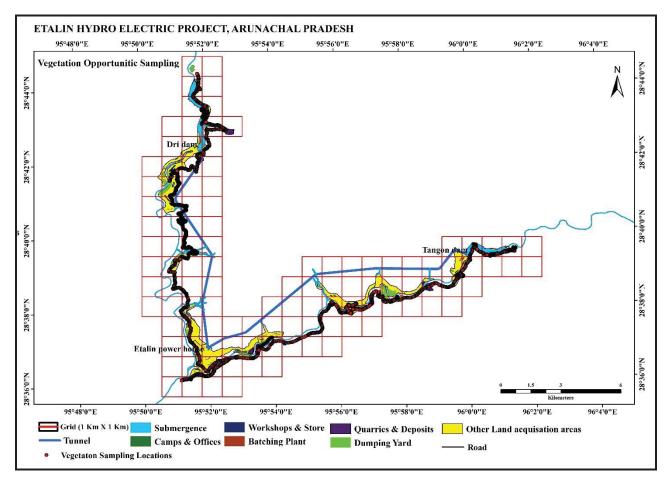
Sampling Efforts

A total of 15 sites were selected randomly depending on accessibility and approach within the ZoI, that include the land acquisition sites along both the Dri and Tangon rivers. Within these 15 plots, spread over the ZoI, on the whole, 133 plots for trees and shrubs and 266 plots for herbs, were quantified. Project land use specific distribution of number of plots sampled are detailed in **Table 4.1**. The locations of the vegetation sampling points are shown in **Maps 4.1 & 4,2**.

Table 4.1. Dela	115 011 5	amping		unicici	n inipaci	LUNES I			Joneni
Impact Zapaa		Dri			Tangon			Total	
Impact Zones	Tree	Shrub	Herb	Tree	Shrub	Herb	Tree	Shrub	Herb
PH&C	17	17	34						
DSA	26	26	52	12	12	24	55	55	110
DS									
QS				6	6	12	6	6	12
DY	6	6	12	14	14	28	20	20	40
W/B	9	9	18	8	8	16	17	17	34

Impact Zanaa		Dri			Tangon			Total	
Impact Zones	Tree	Shrub	Herb	Tree	Shrub	Herb	Tree	Shrub	Herb
CCO	5	5	10	4	4	8	9	9	18
ОТ	8	8	16	10	10	20	18	18	36
NIZ				8	8	16	8	8	16
TOTAL	71	71	142	62	62	124	133	133	266

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones


Map 4.1: Location of Vegetation Sampling Plots

Data analysis

Species richness was based on total number of species in an area. Shannon diversity index was calculated using the analytical software Past 3. Density, frequency and abundance were estimated following Curtis and McIntosh (1950), Misra (1968) and Muller-Dombois and Ellenberg (1974).

Frequency: It is the number of sampling units (%) in which a particular species occurs. Frequency of each species is calculated as follows:

$$Frequency (\%) = \frac{Total \ no. of \ plots \ with \ species \ presence}{Total \ no. of \ plots \ sampled} \times 100$$

Map 4.2: Locations of Vegetation Survey Routes / Trails

Density: It represents the numerical strength of a species in the community. The number of individuals of a species in a unit area, is its density. Density per unit area was calculated for all the species.

$$Density \ per \ plot = \frac{Total \ no. of \ individuals \ in \ all \ plots}{Total \ sampled \ area}$$

Abundance: This is the number of individuals of any species per sampling unit of occurrence. It is calculated as:

$$Abundance \ per \ plot = \frac{Total \ no.of \ individuals \ of \ a \ species \ in \ all \ plots}{Total \ no.of \ plots \ with \ species \ presence}$$

Basal Area: Basal area refers to a ground actually penetrated by the stem. It is one of the important characters determining dominance and the nature of the community.

Mean Basal Area = $\frac{C^2}{4\pi}$

Total Basal Area = Mean basal area × Density (per unit area)

Importance Value Index (IVI): IVI of a species in the community gives its relative importance. It is the sum total of value of relative density, relative dominance and relative frequency.

$$Relative Density = \frac{The \ density \ of \ a \ species}{Total \ density \ of \ all \ species} \times 100$$

$$Relative \ Frequency = \frac{Frequency \ of \ a \ species}{Total \ frequency \ of \ all \ species} \times 100$$

 $Relative \ Dominance = \frac{Total \ basal \ cover \ of \ a \ species}{Total \ basal \ cover \ of \ all \ species} \times 100$

The IVI is attained by combining the previous equations:

IVI = Relative Density + Relative Frequency + Relative Dominance

4.1.1.2 Entomofauna (Arthropods – Butterflies, Moths, Odonates and Spiders)

Effective bioindicators are characterized by attributes such as wide distribution range, taxonomically and ecologically well-known, specificity to the habitat requirement, several direct and indirect relationships with other organisms (Ferris and Humphrey, 1999; Rainio and Niemelä, 2003) and representative of several ecosystem components (Landres et al., 1988). Arthropods have been well established as efficient indicators of ecosystem functions and are recommended for use in conservation planning (Rosenberg et al., 1986; Kremen et al., 1993; Finnamore 1996). They have the widest range of microhabitat occupancy and play diverse ecological roles, than any other group of animals (Longcore, 2003). Further, these organisms have been used to assess habitat quality and habitat differences (Niemelä et al., 1993; Pollet & Grootaert 1996; Rykken et al., 1997; Kitching et al., 2000; Gibb & Hochuli 2002). Small body sizes, short generation time (Kremen et al., 1993), high sensitivity to temperature and moisture changes (Schowalter et al., 2003), and provision of ecosystem services (Longcore, 2003) make arthropods excellent indicators of integrity of forest management practices (Samways, 1994; New, 1995, 1998; Progar and Schowalter, 2002). The relationship between vegetation characteristics and arthropods is important for two reasons. First, the structure of arthropod communities at restored sites may be influenced by the conditions created by the plant community. Studies of old-field succession and restorations have shown a positive relationship between plant species and structural diversity and arthropod diversity (Murdoch et al., 1972; Southwood et al., 1979; Hawkins & Cross 1982; Stinson & Brown 1983; Parmenter & MacMahon 1987, 1990).

In this study, the following four different arthropod taxa were assessed, as each group specialize in occupying their own niche and act as indicators of the state of that microhabitat and habitat:

a) Butterflies and Moths: Butterflies have been used extensively as indicators of ecosystem health mainly because of their strong associations with habitat variables, such as sunny conditions, flower-filled fields, meadows, hilly regions, edges of woodlands, and abundance of herbaceous plants (Niemelä and Baur, 1998; Makino et al., 2006; Nelson, 2007; Halder et al., 2008). Butterfly diversity assessment would indicate the presence of seminatural conditions; specifically, flower abundance, understory herb cover, and vegetation diversity that directly promote butterfly diversity in an ecosystem (Inoue, 2003; Kitahara, 2004; Barlow et al., 2008; Bergman et al., 2008; Halder et al., 2008; Kitahara et al., 2008). It is presumably because of their association with richness of vascular plants, nectar plants and herbaceous plants (Niemelä and Baur, 1998; Grill et al. 2005; Kitahara et al. 2008).

Moths are used as indicators of vegetation recovery after environmental disturbance (New, 2004). Some moth families/subfamilies, for example Arctiinae, Catocalinae, Heliothinae, Noctuinae, Hermeniidae, and Phycitinae) respond positively to disturbances, while other families such as Ennominae, Geometrinae, Epipaschiinae, Lymantriidae, and Anthelidae respond negatively to disturbance regime (Kitching et al., 2000).

- b) Dragonflies: Surveys of dragonfly communities have become essential tools for the ecological assessment of aquatic systems, particularly of standing waters, wetlands and floodplain areas (Maleque et al., 2009). Dragonflies are reliable indicators for evaluating the ecological quality of land-water ecotones, habitat heterogeneity (e.g. bank morphology and aquatic vegetation), and of hydrological dynamics of water bodies (Schmidt, 1985; Corbet, 1993; Samways, 1993; Chovanec and Raab, 1997; Chovanec, 2000).
- c) Spiders: Spiders have been used as successful bioindicators of forest management practices because they can be easily identified and are differentially responsive to natural and anthropogenic disturbances (Pearce and Venier 2006). They are indicators of ecosystem changes caused by clear-cutting, forest fires, vegetation development, and complexity of forest stands (Buddle et al., 2000; Oxbrough et al., 2005). Spiders with high dispersal ability may persist in isolated vegetation patches, while species with poor dispersal ability may disappear from small and greatly isolated land fragments (Buddle et al., 2000; Pearce and Venier 2006).

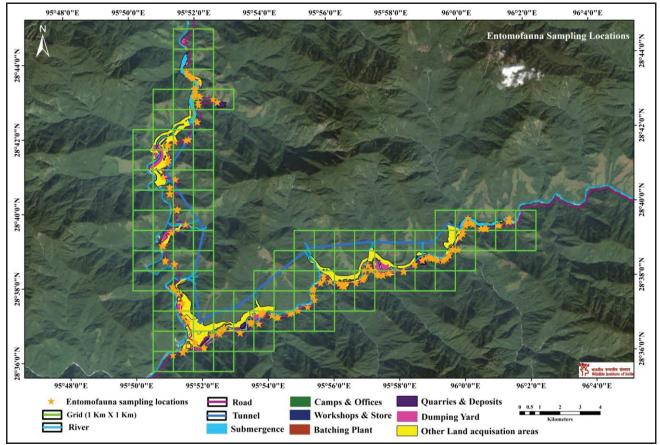
Existing Work

Earlier works on butterflies from this region are in the form of targeted single species survey records (Roy, 2013; Roy, 2017; Singh, 2013), but mostly from higher elevation regions (near Anini), and a well-documented book on butterflies of Arunachal Pradesh by Singh and Das (2016). The butterfly data, thus, can act as a cross-reference and specific pre-monsoon record for the region. It would also probably aid in reporting some species that are not listed in the above-mentioned book.

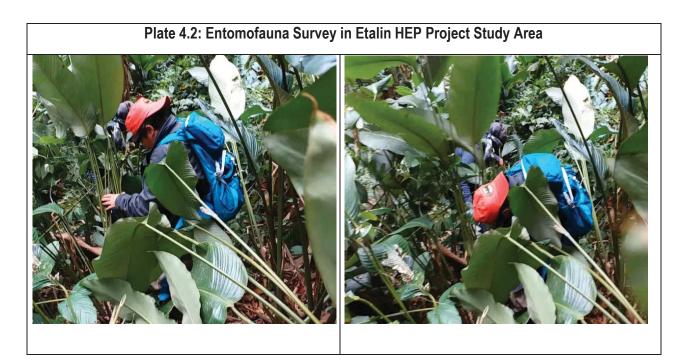
No concise inventory and/or checklist of moths or odonates are available for the specific study site and thus, whatever fraction of moths and odonates we have, can be a small step towards more extensive studies that can be undertaken in future.

There are no Araneae records from the Dibang Valley and this study is the first attempt at establishing a baseline inventory. Although, given the seasonal and time limitations, the samples were mostly subadults and juveniles. A genera level identification is also the first big step to opening up research possibilities. Overall, this study component is expected to add more information on these species' groups of this area as well as biodiversity attributes of the present study.

Sampling


The following methods were used to sample arthropods within the project Zol:

a) Line Transect: All selected faunal taxa / groups were surveyed following line transects of 1km length with a fixed width of 2-3m for spiders, 10-15m in forested and 20-25m in open habitat on both sides for butterflies and 10m on both sides for dragonflies, along motorable roads. This was walked during daytime/daylight hours (9:00-10:00 hrs and 13:00-14:00 hrs). GPS coordinates were recorded at the starting and ending points of the transect and for each species sighted, including the RET species.


- **b)** *Forest trail transects:* These were of varying lengths traversing usually along accessible forest trails within and adjoining high impact zones.
 - Butterflies were photo documented along aforementioned transects and identification was done referring to guides and online information platforms (namely, Smetacek, 2017; Singh and Das, 2016; and <u>www.ifoundbutterflies.org</u>).
 - *Dragonflies* were surveyed through photo documentations along the same transects, walked for butterfly observations, and later identified (<u>www.indianodonata.org</u>).
 - Spiders were surveyed along the aforementioned transects and collected in vials, followed by preservation in 70% alcohol for laboratory identification. Collection methods were based on sampling protocols given by Coddington et al., (1991), but were mainly restricted to active hand collection and sweep netting. Efforts were made to avoid repetitive sampling, i.e., sampling the same location / site again. Samples were identified at genus level with the aid of Olympus SZX7 Stereo Microscope by referring to existing identification guides and records (Tikader and Malhotra, 1980; Tikader, 1982; Sethi and Tikader, 1988; Majumder and Tikader, 1991; Song et al., 1999; Jocqué, et al., 2006; Koh and Leong, 2013; World Spider Catalog, 2018).
 - For *moths*, opportunistic photo documentation was done in and around the base camp, located 10 km away from Etalin village along Tangon river. These were later identified and listed.

A total of 63 transects for spider and 65 transects for butterflies and dragonflies were walked (**Map 4.3**), covering a total distance of 128 kms. In addition, forest trails (cumulative distances of 16km) for assessing the three groups was also surveyed (**Table 4.2**).,

Groups		No. c	of Transects	
	Dri (km)	Tangon (km)	Forest Trails (cumulative km)	Total (km)
Spiders	35	28		72
Butterflies and Dragonflies	38	27	7	72
Total distance surveyed (km)	73	55	16	144

Map 4.3: Entomofauna Sampling Locations (Line Transects & Forest Trails)

4.1.1.3 Herpetofauna

In general, the amphibians and reptiles were assessed along the existing roads running along the eastern side of the Dri River from the confluence to the tail end of the submergence zone of proposed dam and along the south eastern slopes of the Tangon River, from the confluence to the tail end of the submergence zone of that proposed dam. In addition, all the existing paths were also walked till where it was accessible.

It is important to mention here that most of the vegetation cover and microhabitats were disturbed already due to roads being laid (expansion of existing road) by National Highway Authority along the Dri river and construction of new bridges by BRO for defence purpose along the Tangon river. Hence the efforts yielded only less information.

Discussion with the local villagers/community using pictorial representation of herpetofauna also helped to document the species found in the area. Further, attempts were also made to identify the genus or species encountered in the form of fresh road kills, dead skins removed by the reptiles (specifically snakes), and that were found dead.

- a) Amphibians: The amphibians were assessed using Visual Encounter Survey (VES; Steinke, 2016), along the roads and adjacent to streams. They were searched along the specific patch or microhabitat, as these are mostly habitat associated group (water related). Frog calls were also used to record the species (Allison and Englund, 2005). Time Constrained Search method (Welsh, 1987) was also followed wherein a specific micro habitat was searched intensively for 5-10 min depending on the size of the microhabitat. Additionally, other opportunistic sightings were also recorded (Plate 4.3).
- b) Reptiles: This group includes, lizards, snakes, turtles and tortoise. The study period involved largely winter/ post monsoon and pre-monsoon seasons, recording amphibians and reptiles was a difficult task. Since the activity pattern of most of the amphibians and reptiles is limited during winter and pre-monsoon months, assessing their richness and distribution pattern was challenging task during the study period. Besides VES method, we relied on other opportunistic sightings and local knowledge (Steinke 2016; Allison and Englund 2005). All reptiles within an observable distance, depending on visibility, on either side for the entire length of the route, were recorded. Further, as in the case of amphibians, a 20-25 m² plot was laid following Time Constrained Search method (Welsh, 1987). Basically, the search involved turning of rock boulders, fallen logs, searching in the leaf litters and peeling off bark of dead trees, and so on.

The details on the distances covered and number of plots searched for herpetofauna are given in **Table 4.3**.

Table 4.3: Details on Sampling done for Herpetofauna					
Groups	Distance Wa	No. of Plots /patches			
	Road Transects	Paths & Trails	_		
Amphibians	325	3.0	15 (5-10 mins Search)		
Reptiles	25.5	5.0	20 (20-25 m ² plots)		

The data thus collected on both groups is used to describe the taxonomical status along Dri and Tangon rivers, different groups within amphibians and reptiles, their richness status and the species of conservation significance.

4.1.1.4 Avifauna

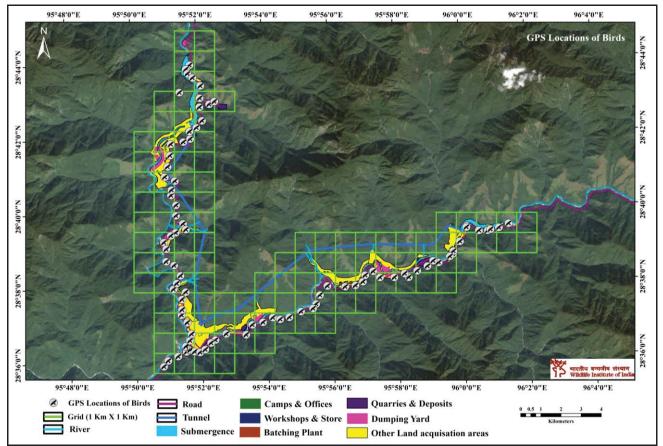
Birds are significant ecological indicators because of their high detectability compared to other groups, mainly due to their widespread presence and diversity in most habitats (Bibby 2002) and sensitivity to natural and anthropogenic environmental alterations (Fleishman and Mac Nally 2006). They also act as effective ecological indicators at a comparatively large spatial scale. For example, many species' distributions are affected by habitat fragmentation or other habitat structural parameters (Askins and Philbrick 1987, Freemark and Collins 1992, Murray and Stauffer 1995, Wilson et al. 1995, Schmiegelow et al. 1997). Many birds occupy high tropic levels and may integrate functional disturbance at lower levels (Cody 1981, Sample et al. 1993, Petterson et al. 1995, Rodewald and James 1996). Bird community composition reflects inter specific dynamics and population trends (Cody 1981). In addition to their role as indicators, the presence of several charismatic species within this group and their inclusion into monitoring programs provides an effective way of increasing awareness of biodiversity threats (Gregory et al. 2008). Birds also provide many direct and indirect ecosystem services and are efficient indicators of the status of ecosystem health.

The State of Arunachal Pradesh is documented as one of the topmost birding areas in the world wherein, more than 700 species of birds have been recorded by Chowdhary (2006). A new taxon of monal pheasant *Lophophorus spp.* (Kumar and Singh,1999) and Bugun Liocichla (*Liocichla bugunorum*) (Athreya, 2006) has also been documented and reported as first record for science from this State.

Sampling

Based on an initial reconnaissance survey along Tangon River and Dri River, the following sampling methodology was selected to fulfil the study objectives:

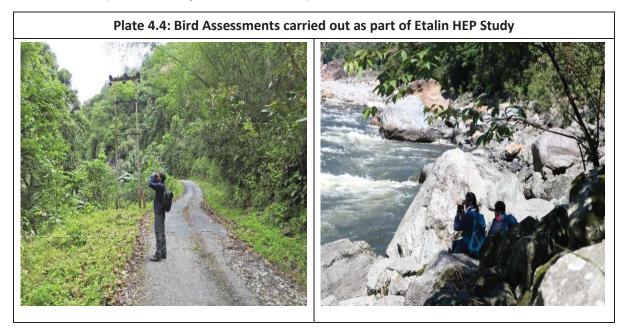
A systematic sampling strategy was used. The study area was stratified based on different project land use/activities-based categories, wherein transect routes close to the impact zone and land acquisition areas that involve major construction activity were identified and sampled over a spatial scale and time period (February to May 2018).


- a) Point Count: This method is used for highly visible or vocal species, often passerines, in a wide variety of habitats and is particularly suited to dense vegetation (Sutherland 2006). The point count method involves recording birds seen and heard from a fixed location and period of time at a distance of equal intervals (Bibby et al. 1992). The time period for each point count station was 20mins and the distance interval between two stations was set at 500m. Birds were recorded at each point over a radial distance of 0-15m depending upon the habitat and terrain conditions. The point counts were done during morning (0630-1030 hrs) and evening (1530-1700hrs) hours, when the birds are more active. Various habitat parameters were recorded within the 10m radius circular plot at each sampling Point.
- b) Line Transect (McKinnon's Species richness method): The detectability of a species varies according to locality and the ability of the observer. For assessing the avian species richness, we used McKinnon's species richness method (McKinnon and Philip 1993). This method involves, preparing list of all species until one has a certain number (10 species) on the list. Species recorded once should not be included again within that particular 10 species list. Once list of 10 is over, then start again, to make a second list of 10 species (the species recorded in the first list if encountered during current listing can be included again); and so on. All the birds sighted (including birds in flight) and identified by calls, were recorded during the sampling, along with their strata and activity. Various habitat parameters were recorded including the starting and ending time, and distance to the transect or survey route.
- c) **Opportunistic Sightings:** Opportunistic sighting involves recording bird species from different areas across the study site other than the regular survey time.

Sampling Details

A total of 89 Point count sites were surveyed and total distance of 50.5 km was covered via line transects. On the whole, using McKinnon's species richness method (McKinnon and Philip, 1993), 49 lists were enlisted (**Table 4.4**). The line transects/survey routes are shown in the map (**Map 4.4**).

	1 0			
Sampling techniques	Dri River	Tangon River	Confluence	Study Area
Point Count Stations (#s)	43	42	4	89
Line Transects (km)	27	22	1.5	50.5
Species richness lists (#s)	22	23	4	49


 Table 4.4: Sampling Details of Avifaunal Assessment

Map 4.4: Map showing Avifauna Sampling Locations

Data analysis

The field data generated (**Plate 4.4**), using all three methods contributed in developing an avifauna checklist. Additionally, the data collected through point count surveys were used to generate information on species diversity, richness and composition.

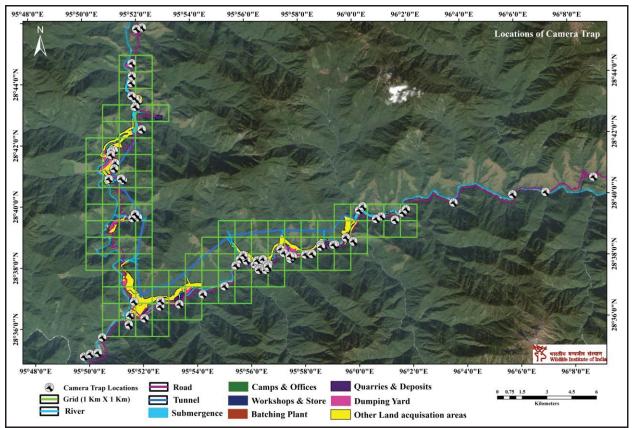
4.1.1.5 Mammals

Arunachal Pradesh is known for its rich biodiversity among any Indian state. About 65% of the total mammalian species of the country are found here (Anwaruddin 2003). Different forest types in the state are attributed to be the cause of rich diversity. Mammals play an important role in the ecosystem and ecosystem services. They are practically present in every ecosystem as members of the food chain and form pivotal links with other species in the ecosystems.

Sampling

Based on reconnaissance surveys (sign survey and secondary information from local communities) conducted along Tangon and Dri Rivers and at their confluence, the following sampling methodology was adopted:

a) Camera trap method: Camera trapping (Swann et al. 2010) was used for recording direct presence of mammals in all major proposed construction activity within the ZoI of project study area. This includes, land acquisition areas mainly for dam construction, guarry, dumping of the waste/muck, construction of batching plants, workshops and stores, offices, camps and colony etc. The elevation ranges of the areas and sites where camera trapping was carried out varied from 600m to 1800m. Camera traps were laid within 1x1 km grids at the closest permissible proximity (given the terrain constraints) to the site of project related activity. Some camera traps were also deployed outside but close to the impact zones (beyond tail end of Submergence of Tangon and Dri river, and below the confluence). Each camera trap was set for a period of 20-30 days.


Camera traps deployed were Cuddeback E and G models. The Cuddeback E model is a white flash model, whereas the Cuddeback G model was an IR (Infrared) model. Both the models had a detection range of 100ft with a trigger speed of 1/4 second. Both models were set to recover as "fast as possible (FAP)" after being triggered once.

b) Random sampling: Random opportunistic surveys were carried out based on information given by local people and sign surveys across the sites to assess the presence of mammals, particularly large cats

Sampling Details

Altogether, 78 camera traps were deployed over an area of 53 sg. k and a total of 1552 trap nights were sampled in the post monsoon/winter and pre-monsoon season (Table 4.5 & Plate 4.5). The locations of camera traps set for sampling mammals are shown in **Map 4.5**.

Table 4.5: Quantitative Details of Camera Trap Samplings					
Sampling area	Grids covered	No. of cameras deployed	Total Camera trap nights/days		
Dri River	16	28	430		
Tangon River	29	46	981		
Confluence	8	9	141		
Total	53	78	1552		

Map 4.5: Locations of Camera Traps laid for Sampling Mammals

Data analysis

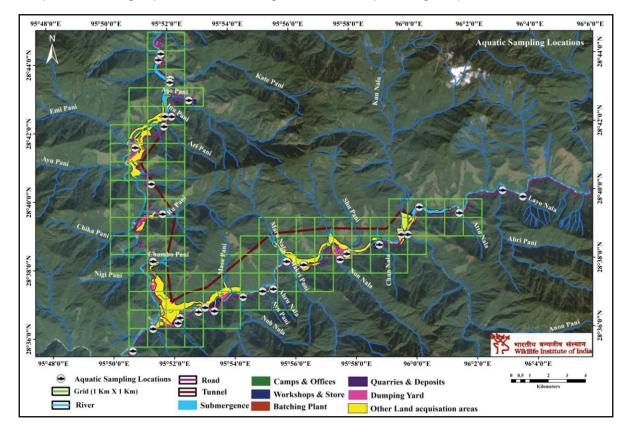
The data generated using the two methods contributed in developing a mammal checklist. Additionally, the Relative Abundance Index (RAI), abundance of a given species across sites, for each species was also estimated. Collation of the data from the two long term research studies carried out/being carried out in (1) Lower Dibang valley and (2) Dibang Wildlife Sanctuary, were used to validate and establish the possible migratory routes for the large mammals beyond the study area

4.1.2 Aquatic biodiversity

Fishes and benthic macroinvertebrates serve as ecological indicators for freshwater ecosystems, therefore, are vital taxonomic groups in any ecological assessment studies (Rajvanshi et al., 2012; Dudgeon, 2008; Magurran 2004, Hauer and Lamberti, 2007; Karr, 1981). In this study as well, distribution of fishes and benthic macroinvertebrates were assessed to ascertain the presence of RET species and aquatic biodiversity value of the study rivers. A reconnaissance survey was conducted along Tangon River, Dri River as well as Dibang river (beyond confluence point) to identify important sampling sites. Subsequently, sampling sites were chosen for detailed survey (**Table 4.6**) along these rivers and associated tributaries based on the impact zone locations and accessibility. The sampling was conducted (**Plate 4.6**) based on the following methodology:

- a) Assessment of water quality parameters: The physico-chemical variables, namely dissolved oxygen (mg/l), pH, water temperature (⁰C), specific conductance (µS/cm), total dissolved solid (ppm), electrical conductivity (µS/cm), were measured at each of the sampling sites using YSI water quality kit (YSI, Proportional Plus, USA) (Table 4.6).
- b) Habitat Assessment: As a part of habitat assessment, certain key river meso-habitat characteristics, i.e. runs, riffles, pools and cascades, were measured in all 35 sampling sites. A sampling segment consist of approximately 100-150 m in length. All-important river characteristics were measured in each segment. Certain key variables related to channel morphology (Hauer and Lamberti, 2007; Johnson and Arunachalam, 2010) were also measured such as river width (m), depth (average), river flow (average), riparian cover (%) and substratum (proportion of rocks, boulders, cobbles, pebbles, sand, silt and woody vegetation if any). The river width was measured by using a range finder (LRF 400 Professionals). The average river flow was measured using flow probe (YSI, USA). Photographs were taken for each site for further habitat analysis.

c) Assessment of Aquatic Biodiversity:


Fish Sampling- Fish sampling was done using different types of fishing gears such as cast net, gill net with different mesh size (0.5 × 0.5 mm, 1 cm × 1 cm, 1.5 cm × 1.5 cm), and employing local methods (bamboo traps etc). Fish sampling was done for approximately 60 minutes in each stream segment. Captured fishes were photographed in the field, identified and released back into the same location of capture.

During post monsoon/winter (Feb-March 2018) and pre-monsoon season (April-May2018) fishes were sampled using local methods. "*Etho*" is the Mishmi name of a fishing gear in which the net is placed in between two bamboo poles. Locals generally keep few small to medium size stones below net so that it can withstand the strong flow in the stream. After placing the gear in the river, locals continuously throw stones around the net to disturb and dislodge fishes and capture them easily in the net. In each sub-basin, few seasonal streams were selected during monsoon season (May-June 2018) for fish sampling. Local methods, namely "*tha*" and "*ayuku*" (bamboo trap), were especially used for fish sampling during the monsoon season. These traps were laid overnight in select places along a stream. According to local knowledge, fishes that migrate especially during monsoon

season are easily caught in such traps. These bamboo traps seem very efficient in capturing fishes such as *Tor* sp., *Neolissochilus* sp., etc.

During sampling, few individuals of unidentified fish specimens were collected and preserved in 70% ethyl alcohol for further identification. Certain complex groups of fishes were identified up to the genus level and then later confirmed with the lchthyologist of Freshwater Fish Section of the Zoological Survey of India (ZSI) Kolkata, using identification guides (Nebeswar et al., 2007; McClelland, 1842; Hora, 1921; Sinha and Tamang, 2015; Thoni and Gurung, 2014).

Benthic invertebrates sampling- Benthic invertebrate sampling was performed using drift net with fine mesh size (Trivedi and Goel, 1986). Collected benthic invertebrate samples were preserved in 70% Ethyl alcohol for further identification in the lab. Identification of the collected sample was done at family level in Zoological Survey of India (ZSI) Solan Himachal Pradesh, using the Olympus Stereo zoom Microscopes and using identification guides (Chandra et al., 2017). Approximately 0.5 m² area on ten randomly picked submerged pebbles, cobbles or gravels were scraped using scalpel.

Map 4.6: Locations of Aquatic Sampling Sites

Data analysis

Collected data was processed and explored for further statistical analysis i.e. developing habitat suitability for indicator species and modelling for impact prediction. Approximately about 60 minutes were spent for fish sampling at each segment which was considered as a sampling effort. Data

collected for all the sampling locations in post monsoon/winter, pre-monsoon and monsoon seasons, were pooled together to generate complete diversity profile (richness and relative abundance).

Fish species richness is the total number of fish species recorded in each stream segment. The number of individuals per species found in each segment was used to calculate relative abundance. Relative abundance data was later used to identify five dominant fish species found in each study subbasin. Non-metric multi-dimensional scaling (NMDS) method was used to calculate fish community composition. All the data was analysed using R statistical software ver. 3.4.1 (R Core Development Team, 2018).

Table 4.6. Sampling Sites for water quality parameters (WQ), fish (F) and macroinvertebrates
(MI) were assessed across seasons.

Season	Dri River	Tangon River	Confluence	Total
Winter (WQ, F, MI)	12	13	2	27
Pre- monsoon (WQ, F, MI)	12	13	2	27
Monsoon (WQ, F)	9	5	0	14

Evaluation of EHEP Impacts on Terrestrial Biodiversity

a) Assessing terrestrial biodiversity values within EHEP area

For this study, a set of criteria were identified to assess terrestrial biodiversity values within each sampled grid (**Table 4.7**). These criteria capture the importance of the ecological/biological characteristics of these areas, especially in terms rarity, vulnerability or irreplaceability of their values.

Table 4.7: Criteria and Description considered for Evaluation of Impacts on RET and Endemic Species

No.	Criteria	Description
1.	RET (Rare, Endangered and Threatened) Species, as per IUCN and other global/national criteria	Percentage of RET species present in the sampled grid (<u>No. of RET species in a grid ×100</u> (Total no.of RET species in the study area)
2.	Endemic Species	Percentage of endemic species present in the sampled grid

Calculation of biodiversity values: weighted scoring

Scores ranging from 1 to 4 were assigned to each criterion with 1 and 4 representing the lowest and highest values respectively. Each criterion was given an equal weight (0.125) so that the maximum cumulative score would amount to one. In order to obtain an overall value, a linear additive value function (Eq. (1)) was used to combine individual criterion:

$$BV_j = \sum_{i=1}^n w_i s_i \tag{1}$$

Where, BV_j is the biodiversity value in a sampled grid j, n is the total number of criteria (two in this case), w_i and s_i is the weight and score for each criterion i respectively. Subsequently, the biodiversity values falling in classes of 0-0.25, 0.26-0.50, 0.51-0.75 and 0.76-1 were categorised in four categories namely low (L), medium (M), high (H) and very high (VH), respectively.

b) Assessing impact potential of EHEP with respect to terrestrial biodiversity

In the current study, the specific impact indicators were used (**Table 4.8**) based on their potential to cause definite changes in characteristics of receptors.

S. No.	Criterion	Description	Weights
1.	Dam	Presence/absence of a dam in the sampled grid	0.05
2.	Land acquired for associated activities (submergence area, muck disposal, quarrying, construction of buildings etc.)	Percentage land acquired within each grid (Area of land acquired (in sq.km)×100 Area of grid (= 1 sq.km)	0.2

Table 4.8:	Criteria and	Description	for Impact	Indicators
	••••••			

In the case of criterion 1, depending on the presence or absence of a particular impact criterion, a score of zero (absence) or four (presence) was assigned. For criterion 2, the percentage values falling in classes of 0, >0-0.25, 0.26-0.50, 0.51-0.75 and 0.76-1 were assigned scores from 0 to 4, in that order.

These criteria were assigned different weights (**Table 4.8**), higher weights were assigned to those impact sources which can have high, permanent, irreversible, or impacts over large spatial or temporal scales. In this case as well, the maximum attainable score was one.

The impact score, referred to as Impact Potential (IP_j) , in a sampled grid j, was calculated using equation 2 (similar to equation 1):

$$IP_{i} = \sum_{i=1}^{n} w_{i} s_{i} \tag{2}$$

After the estimation of impact potential values, the values falling in classes of 0-0.25, 0.26-0.50, 0.51-0.75 and 0.76-1 were categorised in four categories namely low (L), medium (M), high (H) and very high (VH), respectively.

c) Assessing Impact Significance Values

The significance of impacts for terrestrial biodiversity was calculated similar to that done for aquatic biodiversity. The following matrix given in table **4.9** was used.

Biodiversity Value		Impact F	Potential	
	Very high	High	Medium	Low
Very high	Very high	Very high	High	Medium
High	Very high	High	Medium	Low
Medium	High	Medium	Medium	Low
Low	Medium	Low	Low	Low

Table 4.9: Biodiversity Value and Impact Potential Matrix

Evaluation of EHEP Impacts on Aquatic Biodiversity

Assessing biodiversity values and impact significance: Use of criteria

Spatial planning and conservation efforts centres around balancing economic development (e.g., hydropower generation), biodiversity conservation goals and sustained flow of ecosystem services. This calls for evolving a structured, scientifically defensible and effective framework for protecting biodiversity (Regan et.al. 2007). In order to do so, efforts are required to prioritize between geographical areas, and components of biodiversity and the threats by assessing and assigning biodiversity values to the sites (Gilman et al., 2011). A variety of criteria-based assessments (Rosset et al., 2013; Stewart, 2011) specifying ecological, biological, and socio-economic properties have been used to identify areas of relatively high biodiversity value or key biodiversity areas (KBAs) and/or to evaluate impact significance either quantitatively or qualitatively. Such assessments have been used not only to identify areas of local importance but also to identify sites for improving protected networks aimed at maintenance of entire ecosystems at a global scale (Gilman et al., 2011; Regan et al., 2007).

Prediction of impacts and their and their significance is a vital step in ecological impact assessment. The significance of an impact is widely accepted to be a function of the magnitude of the impact (i.e. aspects of development likely to bring change) and the sensitivity of the receptor (i.e. components of the site sensitive to such change). Determination of impact significance gives an indication about what is desirable or acceptable and the degree of importance (Lawrence, 2007a). The key components of impact significance determination procedures are thresholds (a clearly defined performance level that explicitly establishes significance) and criteria. It is crucial that these thresholds and criteria are clearly defined, unambiguous, readily applicable, fully substantiated and relevant to the local and regional context (Lawrence, 2007b).

Systems of scoring and weighting are used frequently in ecological assessments to measure and adjust criteria and impacts. Scoring enables assigning numerical thresholds to evaluation criteria. Weighting enables prioritizing among criteria (Gilman et al., 2011). Weighted scoring or Simple Additive Weighting method is one of most widely used methods in multi-criteria analysis for decision making as well as for biodiversity risk assessment (ICEM, 2007; SEIA 2008; Dodgson et al., 2009). In this study, biodiversity values and significance of hydropower impacts on biodiversity were assessed using criteria, thresholds and weighted scoring.

a) Assessing biodiversity values within EHEP area

For this study, a set of criteria was identified to assess the biodiversity values within each sampled grid (**Table 4.10**). These criteria capture the importance of the ecological/biological characteristics of the sampled areas, especially in terms of rarity, vulnerability or irreplaceability of their values.

No.	Criteria	Description
1.	RET (Rare, Endangered and Threatened) Species, as per IUCN and the Indian Wildlife Protection Act (IWPA, 1972)	Percentage of RET species present in the sampled grid No. of RET species in a grid ×100 (Total no.of RET species in the study area)
2.	Endemic Species	Percentage of endemic species present in the sampled grid
3.	Migratory species (long- distance)	Percentage of migratory species present in the sampled grid.
4.	Breeding/Congregation sites	Presence/absence of breeding sites and congregation opportunities for fish species
5.	Species Richness	Relative species richness (%) in the sampled grid.

Table 4.10: Criteria for assessing Aquatic Biodiversity Values within the Study Area

Calculation of biodiversity values: weighted scoring

Scores ranging from 1 to 4 were assigned to each criterion with 1 and 4 representing the lowest and highest values respectively. In the situation where, binary responses were obtained (e.g. presence/absence of breeding/congregation sites), the absence of that particular value was assigned a score of 1, while presence was assigned a score of 4. This scoring system allowed for standardization of the values generated for individual indicators.

Each criterion was given an equal weight (0.05) so that the maximum cumulative score would amount to one. In order to obtain an overall value, a linear additive value function (Eq. (1)) was used to combine individual criterion:

$$BV_j = \sum_{i=1}^n w_i s_i \tag{1}$$

Where, BV_j is the biodiversity value in a sampled grid j, n is the total number of criteria (five in this case), w_i and s_i is the weight and score for each criterion i respectively. Subsequently, the biodiversity values falling in classes of 0-0.25, 0.26-0.50, 0.51-0.75 and 0.76-1 were categorised in four categories namely low (L), medium (M), high (H) and very high (VH), respectively.

b) Assessing impact potential of EHEP with respect to Aquatic Biodiversity

In the current study, the specific impact indicators were used (**Table 4.11**) based on their potential to cause definite changes in characteristics of receptors.

No.	Criterion	Description	Weights
1.	Dam	Presence/absence of a dam in the sampled grid	0.10
2.	Submergence area	Presence/absence of submergence area in the sampled grid	0.76
3.	Muck disposal site	Presence/absence of a muck disposal site in the sampled grid	0.05
4.	Quarrying site	Presence/absence of a quarrying site in the sampled grid	0.05
5.	Tributary inflow	Presence/absence of a tributary confluence in the sampled grid	0.04

Table 4.11: Criteria for Impact Indicators

Depending on the presence or absence of a particular impact criterion, a score of zero (absence) or one (presence) was assigned. The only exception was the criterion "tributary inflow" where the presence of a confluence was assigned a score of zero and absence was assigned the score of one, since a tributary discharging into the main dammed river has the potential of reducing the impacts of other impact sources. In other words, the absence of an inflowing tributary was considered as an impact source.

These criteria were assigned different weights (**Table 4.11**), higher weights were assigned to those impact sources which could induce high, permanent, irreversible impacts over large spatial or temporal scales. The maximum possible impact value score was one.

Since the impacts within a river system are cumulative in nature, a different methodology for the calculation of cumulative impact score was adopted. For the calculation, it was assumed that the impacts are additive and that 70% of the impacts within adjacent upstream grid are retained in the grid under evaluation. Firstly, impact scores were calculated for all relevant grids based on impact sources within the grid, i.e. excluding upstream impacts. This impact score, referred to as Exclusive Impact (*EI*_{*i*}) value in a sampled grid *j*, was calculated using equation 1:

$$EI_j = \sum_{i=1}^n w_i s_i \tag{2}$$

The final impact score inclusive of upstream impacts in a grid j, referred to as Impact Potential (IP_j) , was calculated by adding 70% of the exclusive impact value of the previous grid (EI_{j-1}) to the exclusive impact value of the current grid (EI_i) :

$$IP_{j} = EI_{j} + 0.7 \ (EI_{j-1}) \tag{3}$$

The impact potential values were calculated using equation (3) in the grids downstream to the proposed dams. Equation (2) was used to calculate impact potential values for grids upstream to the dams and those containing tributaries of Dri/Tangon river.

After the estimation of impact potential values, the values falling in classes of 0-0.25, 0.26-0.50, 0.51-0.75 and 0.76-1 were categorised in four categories namely low (L), medium (M), high (H) and very high (VH), respectively.

c) Assessing Impact Significance Values

The significance of an impact is widely accepted to be a function of the magnitude of the impact (*IP*) and the sensitivity of the receptor (*BV*). As seen in previous sections, the quantitative scores were ultimately converted into qualitative score (L, M, H, VH) for both impacts sources and receptors. These categorized impact potential values and biodiversity values were then interacted in the form of a matrix to give the significance of impacts. The key followed for arriving at interaction values (modified from ICEM, 2007) is given in the table (**Table 4.12**).

odiversity Value	Impact Potential				
	Very high	High	Medium	Low	
Very high	Very high	Very high	High	Medium	
High	Very high	High	Medium	Low	
Medium	High	Medium	Medium	Low	
Low	Medium	Low	Low	Low	

Table 4.12: Impact Evaluation Matrix

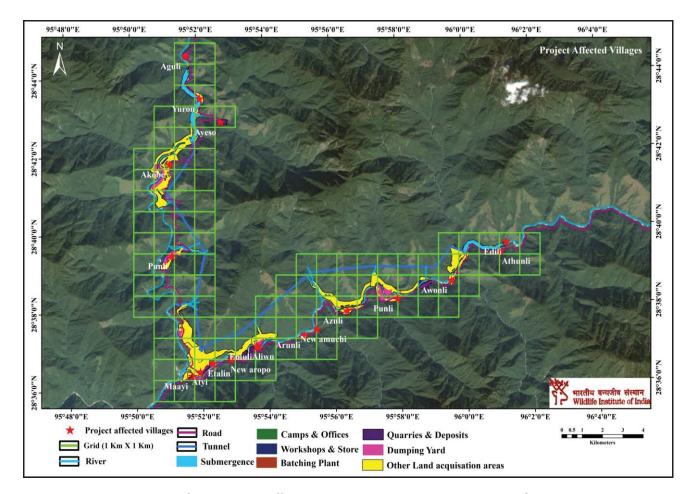
4.1.3 Socio-cultural Status

Survey methodology

- a) Identification of Project Affected Villages (PAVs): Demographic profiles of the district were extracted from Primary Census Abstract, 2011 (National Census, govt. of India, 2011) and list of Project Affected Villages (PAVs) along with list of Project Affected Families (PAFs) were extracted as secondary data (Social Impact Assessment and R & R Plan of EHEP Project, January 2015). A total of 18 villages were identified as PAVs. From this list of PAVs, the number of PAFs for both Dri and Tangon basins of the project area, were identified. The PAVs were further differentiated based on direct (land acquisition) and indirect impacts (other project related activities) of EHEP on the people.
- b) Semi-structured Questionnaire Survey: A standard questionnaire was developed for the collection of primary data from the field. The questionnaire for the survey was pre-tested (trial runs) to assess the appropriateness of the questions. A semi-structured questionnaire (Annexure 4.1) with both open ended and close ended questions was used for the survey (Bernard 2017; Mitra et al., 2017; Nash et al., 2016; Nyariki, 2009).
- c) Survey Procedure: Primary strategy for identifying respondents, for conducting household surveys, involved selecting people randomly to interview by walking through each village. As each

village was relatively small, this approach led to traversing the entire village. Children and teenagers below the age of 15 were not interviewed. One respondent per household was interviewed, usually head of the family. Respondent of both genders were interviewed and if anyone reported having an occupation, then they were also interviewed (**Plate 4.7**).

Plate 4.7: Interviewing individuals from local Ethnic Community, in different villages of the Study Area



This survey included some demographic information on gender, age, religion, tribe, clan, education level, length of residency, household profile (type of family), type of house, source of household income, drinking water facilities, use of fuel, crop cultivation and livestock, knowledge about medicinal plants, cultural values associated with flora and fauna (totems and taboos). Knowledge about wildlife present in and around villages was ascertained using field guide books. Pictures of mammal, birds and snakes were shown to respondents for easy identification and to gather information on their local names. Later on, fodder species, wild edible species of plants, medicinal plants used by them were also photo documented. Perception of people towards EHEP, in terms of the loss and gain considering their economy and culture, was also recorded.

As the villagers were wary of questionnaire forms used for conducting interviews, hence information was noted down in field notebook, sometimes even recorded with Dictaphone with their permission and transcribed later.

d) Sampling Details - Household Survey

Total 179 households were interviewed in the 22 villages surveyed (**Map 4.7**). Kaduli and Matuli villages were surveyed as residents of Ayeso and Apayee villages, as they had settled there for approximately last 20 to 30 years. Imuli village was also surveyed on Dri side as resident of Ayeso village were settled there. List of villages surveyed is given below (**Tables 4.13 & 4.14**).

Map 4.7: Locations of the Project Affected Villages (PAV) in the Etalin HEP Study Area Table 4.13: Details on Project Affected Villages and Families (PAV/PAF) surveyed in Anini Circle/ Dri river

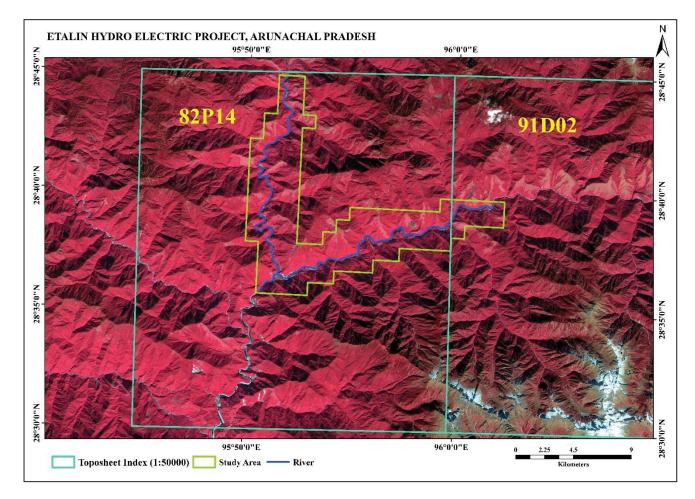
S.No.	Anini Circle/Dri Basin				
	PAVs	PAF	PAFs Surveyed		
1.	Punli	31	17		
2.	Ayeso	6	1		
3.	Akobe	23	8		
4.	Yuron	10	3		
5.	Apayee	11	0		
6.	Aguli	10	4		
7.	Matuli	0	8		
8.	Kaduli	0	8		
9.	Imuli	0	2		
	Total	91	51		

PAV – Project Affected Villages, PAF – Project Affected Families

S.No.		in Circle/Tango	on Basin
	PAVs	PAF	PAFs Surveyed
1.	Etalin HQ	42	34
2.	Etalin Bridge Point	62	34
3.	New Aropo	16	12
4.	Emuli	7	0
5.	Punli	5	3
6.	Aruli	19	12
7.	Athunli & Edili	25	13
8.	Aunli	10	6
9.	Apunli	4	0
10.	Aliwu	3	1
11.	Atyi	8	4
12	Azuli	2	2
13	Amuchi	0	4
14	Маауі	0	3
	Total	203	128

Table 4.14: Details on Project Affected Villages and Families (PAV/PAF) surveyed in Etalin Circle / Tangon Basin

Note: Total 294 PAFs in 18 PAV's were identified for Social Impact Assessment and R & R Plan of EHEP Project, January, 2015. No PAF's dwell in the following PAV's viz. Apayee, Apunli, Emuli. They dwell elsewhere and survey of these PAFs was conducted in other villages. In addition to these, many PAFS do not stay in PAV's as they have their permanent / temporary residence in Anini, Roing, Tezu, Itanagar etc. So, during the time of survey they were unavailable.


- e) Analytical Methods: The primary data collected from the household survey will be used to understand the following aspects:
 - Socio economic status of the PAV in the form of quality of life and sources of income generation
 - Cultural values attached to biodiversity of the study area and kind of resources they depend on to understand the magnitude of resource use.
 - Impacts of project related activities on both economy and culture and their perceptions on the EHEP.
 - Structuring the types of management plans to be implemented, so as to minimise the biotic pressures (people & project) on the biodiversity of the project area under CSR activities.

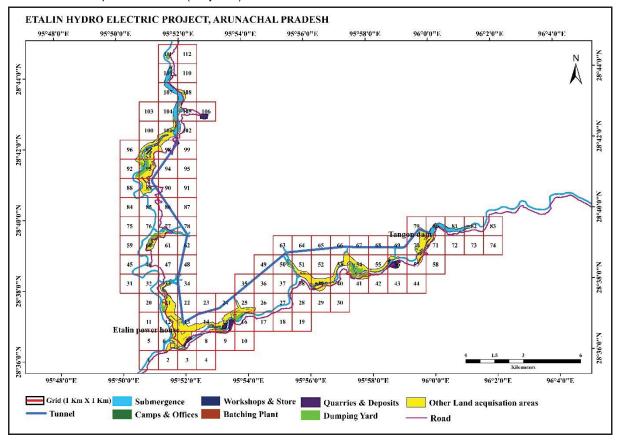
4.4 Geospatial database

The GIS database of the Etalin HEP study area was generated by collecting several ground truth data and the data that were acquired from satellite imagery. The landscape features like road, settlements and plantations were generated from the ground truth data collected. The topographic

sheets (82P14, 91D02) was used as a reference to affirm the data generated. **Map 4.8**, shows the toposheet index of the study area. Various thematic layers prepared based on the above were as follows,

- Study area / Impact zone
- Vegetation types and land use/land cover (LULC)
- Sampling locations
- Threatened species locations
- Tiger presence/absence map
- Land acquisition area (Source Etalin HEP)
- > 3D view of the study area
- Project affected villages
- Contour
- > Slope
- > Aspect

Map 4.8: Toposheet Index of the Etalin HEP Study Area


The GIS & RS techniques were used to map the forest types mainly to facilitate and support in the assessment of all the other study components that include vegetation, entomofauna, herpetofauna, birds, mammals, fishes, benthic invertebrates and local communities related biodiversity issues, as part of collating the baseline biodiversity values of the Etalin HEP project. Geospatial database for the study was developed through the following major objectives.

- Delineation of the Zol (study area) that comprises the proposed dam construction site and sites identified for other related operation activities (land-acquisition areas), and geophysical and biological attributes (Land Use and Land Cover).
- Preparation of different first level thematic maps, namely contour map, drainage map, vegetation type map (Land Use and Land Cover) and maps containing sampling locations, in order to facilitate surveys for all study components.
- Preparation of biodiversity attribute maps (species richness/abundance /diversity/RET species) of different floral, faunal and social components studied.
- Identification and preparation of critical habitat and grid-based biodiversity value, impact potential and impact significance maps for terrestrial and aquatic components.

4.4.1 Methodology

4.4.1.1 Demarcation of the Study area / Delineation of Zones of Impact (ZOI)

- > 1km x 1km grids were generated and overlaid over the proposed project land acquisition areas.
- > All grids that were overlapping with the land acquisition areas, river valley and the grids adjacent to them were selected for delineating the study area *viz-a-viz* the impact zones.
- This covered all the land acquisition areas of the project including quarries & deposits, dumping yards, submergence, batching plants, camps, residential colony and offices, tunnels and other land acquisition areas (Map 4.9).

Map 4.9: Land Acquisition Areas with Gridded Etalin HEP Study Area Boundary

4.4.1.2 Satellite data used

- Sentinel-2A with 10 m resolution and Landsat 8 satellite data with a spatial resolution of 30m acquired on the month of November 2017 used for this study as the cloud cover in it was low.
- Cartosat DEM (Digital Elevation Model) data with 30m resolution was used for contour and Land use and land cover mapping.

4.4.1.3 Software used

ERDAS IMAGINE 2016 and ARCGIS 10.5.1 were used to prepare different thematic maps. Google earth was used for ground truthing.

4.4.1.4 Methodology adopted for the Vegetation Types and Land Use / Land Cover Mapping.

We attempted knowledge-based classification techniques with satellite images having different spatial resolutions i.e., Sentinel-2A data with 10 m resolution and Landsat 8 with 30 m resolution. Initially the Sentinel -2A was used for deriving Normalised Difference Vegetation Index (NDVI),

NDVI = (NIR - RED)/(NIR + RED)

Then it was conjugated with the Cartosat DEM and unsupervised classification is performed with 500 clusters. Quite large amount of miss classification of the pixels in resultant image was experienced. And then Landsat 8 satellite data is performed with the Modified Soil Adjusted Vegetation Index – 2 (MSAVI

$$^{-2}$$
, $MSAVI 2 = (2 * NIR + 1 - SQRT((2 * NIR + 1)^2 - 8 * (NIR - RED)))/2$

Followed by the MSAVI 2, unsupervised (Roy et al., 1993; Joseph et al., 2018; **Figure 4.1**) is performed for the resultant image with 100 clusters gave a better classification output. As the study area falls under the category of climax and mixed forests it was hard to carry out intensive classification. Knowledge based classification technique is carried out for the vegetation types and LULC classification.

The Vegetation type and LULC are broad classification of vegetation types and physiographic features, which are categorized into Tropical, Subtropical, Secondary evergreen forest (that mainly comprised bamboo, wild banana and broad-leaved species), Grassland, Settlement, Scrub and River. The forest types were categorized according to various properties like spectral signature, texture, tone and altitude. The various ground truth locations of settlements, roads and the other landscape features were collected to refine the classified satellite image.

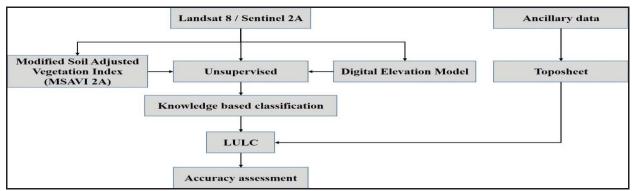
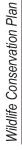


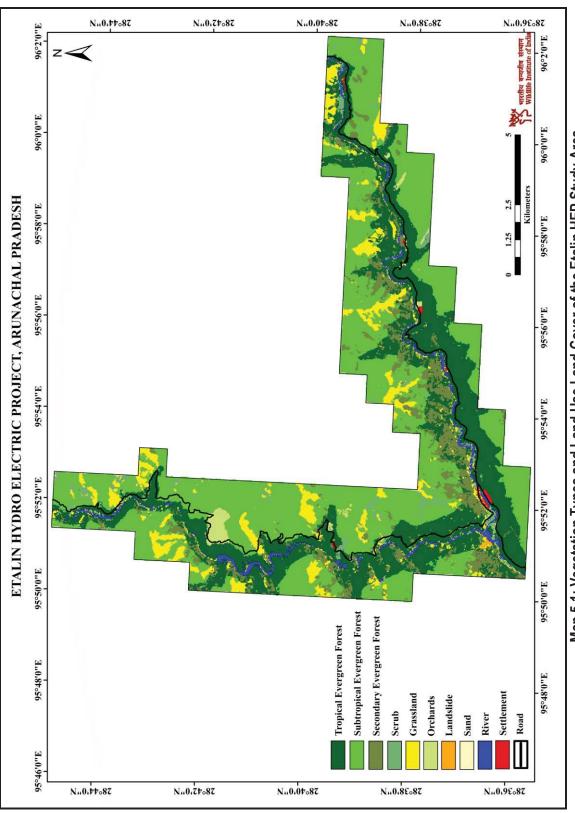
Figure 4.1: Flow Chart showing the Methodology adopted for Land Use and Land Cover (LULC) Classification

Chapter 5: Assessment of Biodiversity values in the Study Area

5.1 Habitat Status – Mapping of Vegetation types and Land Use / Land Cover and other features

5.1.1 Vegetation types and Land Use / Land Cover

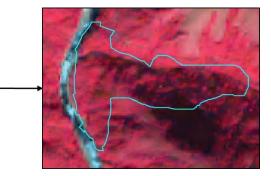

A detailed vegetation types and LULC map was produced using knowledge based classification technique i.e. Modified Soil Adjusted Vegetative Index 2 (MSAVI 2). The forest types based on the previous research work carried out in the northeast region by Rao and Panigrahi (1961), Champion and Seth (1968), Kaul and Haridasan (1987), are categorized according to tone, spectral signature and altitude. The vegetation and LULC mapping are broad classification of vegetation types and physiographic features. The vegetation types were categorized into Tropical evergreen, Subtropical evergreen forest (that mainly comprised bamboo, wild banana and broad-leaved species), Grassland, Settlement, Scrub and River.


The accuracy assessment of vegetation types and land use/landcover map was performed by calculating the Kappa coefficient and overall accuracy through the preparation of confusion matrix. Based on this the overall accuracy of the vegetation types and land use/landcover mapping were found to be 90% and the Kappa coefficient is 84%.

The vegetation and land use / land cover mapping of the Etalin HEP study area showed that Subtropical Evergreen Forest was the most dominant category, forming 44.4% of the total study area (112 km²). Tropical Evergreen Forest (30.4%) was the second most commonly found vegetation or LULC type in the study area followed by Secondary Evergreen Forest (9.9%) and Grasslands (8.3%). Scrub was minimal, while other categories were very less, thus showing that the study area is almost fully covered with forest (**Table 5.1 & Map 5.1**).

LULC	AREA (Sq. km)	Percentage (%)
Subtropical evergreen forest	49.75	44.42
Tropical evergreen forest	34.05	30.40
Secondary evergreen forest	11.11	9.92
Scrub	3.88	3.47
Grassland	9.25	8.25
Orchards	1.33	1.19
Landslide	0.03	0.032
Sand/River bed	0.19	0.17
Water channel/River	2.03	1.82
Settlements	0.33	0.29
Total	112	100

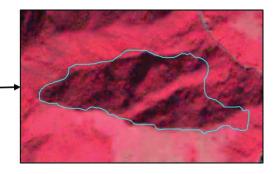
Table 5.1: Extent (km²) and Relative % of different Vegetation and Land Use Land Cover (LULC)types in Etalin HEP Study Area


65

5.1.1.1 Description of different Vegetation and Land Use/Land Cover types

Tropical Evergreen Forest

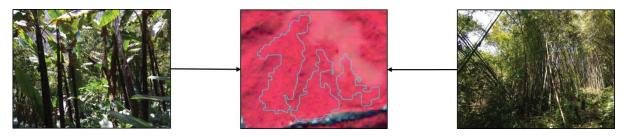
Tropical evergreen forest extends up to 1200mts where, mostly it spreads along the river valley and foothills with a dense canopy, evergreen forest. *Calamus erectus, Terminalia myriocarpa, Tetrameles nudiflora, Aerides multiflora Roxb.* were the common associates found in this type of forest. The reflectance of the tropical forest is varied from dark red to pink in colour depending on the aspect.



Tropical forest on the ground and delineation in satellite image

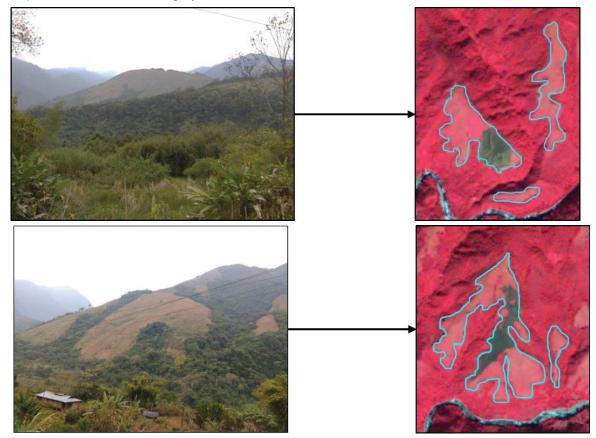
Subtropical Evergreen Forest

The Subtropical evergreen forest occurs between 1200m to 1800m, which are evergreen, dense in nature and rich in species diversity. These were similar to the tropical forest region in the satellite image as altitude and the association played a vital role in classifying these forest types. They appeared as bright red to pink in colour on the satellite image.



Subtropical Forest on the ground and delineation in satellite image

Secondary Evergreen Forest


The satellite data used for the study was acquired for the month of November, which is a peak winter, when the leaves were very moist and showed a specular texture in the satellite image. This specular texture is used for the delineation of Secondary Evergreen Forests. Secondary evergreen forest occurs up to the altitude of 3000m, which are influenced by different factors both biotic and abiotic. Bamboo, wild banana and broad leaves were the predominant species found in this type of forest. Degraded forest, which has poor species diversity with subservient trees, also falls under the Secondary evergreen forest category. They appear in shades of pink from bright to light on the satellite imagery.

Secondary Evergreen Forest on the ground and delineation in satellite image

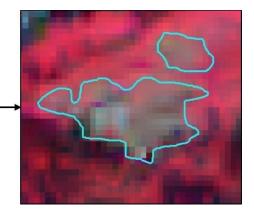
Scrub and Grassland

The scrub and grasslands areas are interpreted easily with their unique smooth texture and by the light pink colour and some of the burnt area appear in dark grey tint in the FCC image, which helps to differentiate with all other features. The grasslands are surrounded by the scrubs, which are also easily interpreted in the satellite imagery

. Scrub and Grassland on the ground and delineation in satellite image

River

River and water channels, were clearly seen on the satellite imagery in blue and cyan colour depending on the depth of water, with a long narrow / wide pattern, a distinct feature associated with the drainages on hill slope.



River on the ground and delineation in satellite image

Settlements

The settlements areas are identified by its greyish tone in the FCC image. Ii shows a light, rough and defined shape, which are mostly associated with the Orchards. Some of the villages that are having single households are mapped by collecting ground truth of the village.

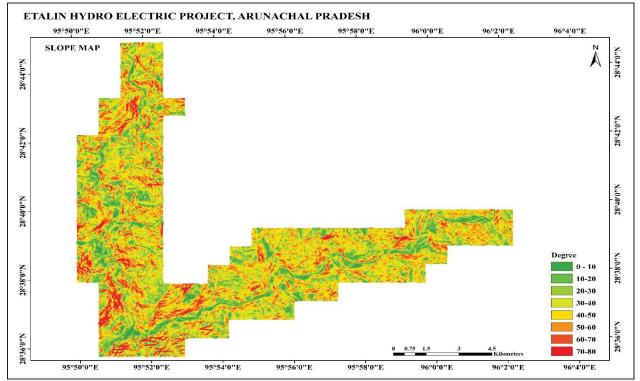
Settlements on the ground and delineation in satellite image

Orchards

This category comprises of the various plantation and agricultural activity in the study area. The elaichi, orange and other citrus fruits are the major plantations found. They appear as a well-defined land parcels with smooth dotted texture and dark tone, where it is mostly associated with the settlements.

The various ground truth locations of settlements, roads and the other landscape features were collected to refine the classified satellite image.

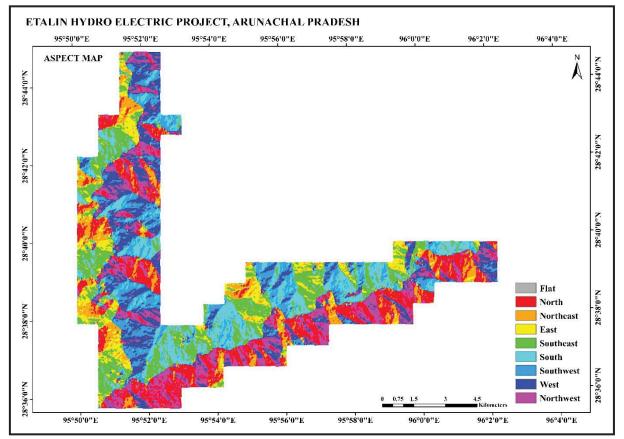
5.1.2 Terrain and Topographic Features


In this section the Slope, Aspects and the terrain features of Etalin HEP study Area are discussed (Maps 5.2, 5.3 & 5.4)

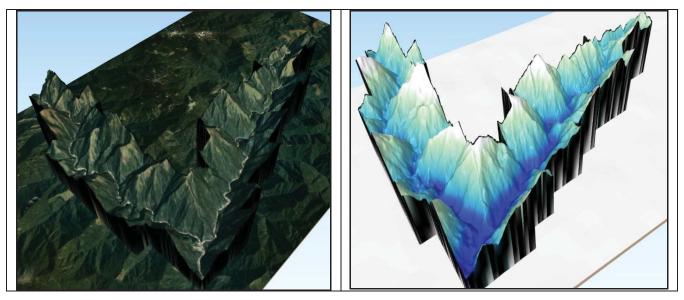
5.1.2.1 Slope

Cartosat DEM were used to generate Slope and Aspect of the study area. Slope and Aspect are the important triggering factors that determines the hazardousness of an area. Higher slope values indicate steeper terrain while lower values represent flatter terrain. The range of elevation of the study area is from 540mts to 2327mts. In majority of the study area, slope varies between 30-50 degrees (**Table 5.2**). **Map 5.2**, shows the slope characteristics of the study area.

S. No	Classes	Area (Sq. km)	%
1	0-10	5.61	5.05
2	10-20	10.92	9.75
3	20-30	17.93	16
4	30-40	24.09	21.5
5	40-50	25.17	22.47
6	50-60	17.01	15.18
7	60-70	8.28	7.39
8	70-80	2.99	2.66
	Total	112	100


Map 5.2: Slope map of the Etalin HEP Study Area

5.1.2.2 Aspect


The aspect has significance in understanding the slope stability. Usually southeast (SE) to south (S) and southwest (SW) slopes are comparatively more prone to slope failure and sliding activities in Himalayas. In addition, aspect identifies the downslope direction of the maximum rate of change in value from each cell to its neighbour. In the study region, however, northern and southern aspects or facing slopes were comparatively more, most of the other aspects were also not much different in terms of representation in the study area. The representation of flat terrain was very low (**Table 5.3**). **Map 5.3** shows the different aspects of the mountainous terrain of the study area.

S. No	Class	Area (Sq. km)	%
1	Flat	0.0042	0.0038
2	North	17.42	15.56
3	Northeast	10.22	9.12
4	East	9.19	8.21
5	Southeast	14.34	12.80
6	South	16.58	14.80
7	Southwest	14.79	13.20
8	West	13.87	12.38
9	Northwest	15.56	13.89
Total		112	100

Table 5.3: Extent (km²) and Relative % of different aspect types in the Etalin HEP Study Area

Map 5.3: Aspect map of the Etalin HEP Study Area

Map 5.4: 3D Maps of the Etalin HEP Study Area showing the Steepness of Terrain

5.2 Terrestrial Biodiversity

5.2.1 Status of flora

In total, 398 plant species were collected and identified, belonging to 106 families and 286 genera (**Table 5.4 & Annexure 5.I**) from Etalin HEP study area. Asteraceae and Poaceae were the dominant families, represented by 24 plant species each, followed by Urticaceae (20 species), Fabaceae (18 species), Rubiaceae (14 species) and Orchidaceae (12 species). Of the total, 270 species (86 families with 206 genera) were recorded from Dri basin and 301 species (80 families with 208 genera) were recorded from Tangon basin. Five families of gymnosperm were reported from the study area, of which two were recorded in the present study, with one species each from Dri basin and Tangon basin (**Table 5.4 & Annexure 5.2**). A total of 13 species of pteridophytes belonging to eight families were reported from the area. Of these 13 species seven species each were recorded along Dri and Tangon limbs (**Table 5.4 & Annexure 5.3**).

The proportion of species in the study area under each taxon was in following order: herb (30%) > tree (23%) > climbers (17.4%) > shrub (16.5%) > grasses and sedges (7%) > orchid (3%) and pteridophyte (3%). Similarly, in Dri basin (270 species), herb (30%) > tree (24%) > climbers (19%) > shrub (17%) > grasses & sedges (5%) > orchid and pteridophyte (3% each), while herb (33%) > tree (22%) > climbers (19%) > shrub (14%) > grasses & sedges (8%) > orchid and pteridophyte (2% each) in Tangon basin (**Table 5.4**).

Habit	Dri limb	Tangon limb	Total species
Angiosperms			
Tree	70	70	95
Shrub	47	45	66
Climber	51	55	71

Table 5.4: Status of different Floral Life Forms i	in EHEP	Study Area
--	---------	------------

Orchid	8	7	12
Herb	80	98	125
Grass & sedge	14	26	29
Sub Total	270	301	398
Gymnosperm	1	1	2
Pteridophyte	7	7	13
Total	278	309	413

5.2.1.1 Vegetation Community Composition

Tree layer

Total of 58 tree species were encountered through quadrat sampling, which was 63.7% of the total tree species (91 species) recorded in the study area. Of the total 58 species, 88% (51 species) and 90% (52) species were recorded from Dri basin and Tangon basin, respectively. The 51 species formed 79.7% of the recorded species (64 tree species) along the Dri basin, while 52 species recorded in the Tangon basin accounted for 77.6% of the total tree species (67 species) recorded in the area through inventory (**Tables 5.4 & 5.5**).

Along the Dri basin, *Castonopsis indica* had the highest density (57.75±12.95 trees ha⁻¹) followed by *Macaranga denticulata* (36.62±10.47 trees ha⁻¹) and *Engelhardtia spicata* (35.21±8.53 trees ha⁻¹). In terms of total basal area of a species (TBA) and Importance Value Index (IVI) *Castonopsis indica* had maximum value (3.45 m⁻²ha⁻¹ and 40.1, respectively). *Lithocarpus pachyphyllus* (2.53 m⁻²ha⁻¹ and 20.21) accounted for second highest values for TBA. In terms of IVI *Engelhardtia spicata* (1.28 m⁻²ha⁻¹ and 21.42) and *Mecaranga denticulata* (1.02 m⁻²ha⁻¹ and 20.66) followed *Castonopsis indica* (**Table 5.5**).

Along the Tangon basin, *Castonopsis indica* had the highest density (93.55±19.22 trees ha⁻¹) followed by *Ficus semicordata* (40.32±12.90 trees ha⁻¹) and *Diploknema butyraceoides* (27.42±14.39 trees ha⁻¹). In terms of total basal area of a species *Castonopsis indica* had maximum value (4.86 m⁻²ha⁻¹) followed by *Diploknema butyraceoides* (2.42 m⁻²ha⁻¹) and *Terminalia myocarpa* (2.26 m⁻²ha⁻¹). *Castonopsis indica* (53.27) accounted for highest value of IVI in the region. *Ficus semicordata* (19.12) and *Diploknema butyraceoides* (18.80) followed *Castonopsis indica* (**Table 5.5**).

		Dri basin			Tangon basin		
S.No.	Plant species	Trees (ha ⁻¹ ±SE)	TBA (m ⁻² ha ⁻¹)	IVI	Trees (ha ^{₋1} ±SE)	TBA (m ⁻² ha ⁻¹)	IVI
1	Castonopsis indica	57.75±12.95	3.45	40.08	93.55±19.22	4.86	53.27
2	Engelhardtia spicata	35.21±8.53	1.28	21.42	6.45±4.52	0.19	3.39
3	Macaranga denticulate	36.62±10.47	1.02	20.66	11.29±4.66	0.36	7.60
4	Lithocarpus pachyphyllus	19.72±9.75	2.53	20.21	14.52±9.44	0.98	8.93
5	Ficus semicordata	29.58±9.70	0.58	14.92	40.32±12.90	0.92	19.12
6	Diploknema butyraceoides	0.00±0.00	0.00	0.00	27.42±14.39	2.42	18.80

 Table 5.5: Importance Value Index of Tree species of Etalin HEP Study Area

		D	ri basin		Tar	ngon basin	
S.No.	Plant species	Trees (ha ^{.1} ±SE)	TBA (m ⁻² ha ⁻¹)	IVI	Trees (ha ^{.1} ±SE)	TBA (m ⁻² ha ⁻¹)	IVI
7	Ostodes paniculate	35.21±12.22	0.87	17.20	17.74±9.35	0.30	8.09
8	Lithocarpus fenestratus	30.99±12.13	1.36	16.98	0.00±0.00	0.00	0.00
9	Castanopsis tribuloides	29.58±10.69	0.85	14.68	1.61±1.61	0.25	1.99
10	Litsea cubeba	33.80±10.79	0.38	13.66	17.74±10.91	0.14	6.80
11	Bischofia javanica	28.17±9.86	0.67	13.37	6.45±3.90	0.15	3.85
12	Kydia calycina	5.63±2.76	0.14	3.74	12.90±4.87	1.28	12.35
13	Terminalia myocarpa	1.41±1.41	0.01	0.78	6.45±3.90	2.26	12.50
14	Others	180.28	4.11	99.81	219.35	10.24	141.21
	Total	523.98	17.25		475.79	24.35	

Shrub layer

A total of 37 shrub species was encountered through quadrat sampling, which was 56% of the total shrub species (66 species) recorded using all methods. Of the 37 species, 26 and 28 species were recorded from the Dri basin and the Tangon basin, respectively. These 26 species formed 58% of the total recorded species (45 shrub species) in the Dri basin, and 28 species recorded in the Tangon basin accounted for 65% of the total shrub species (43 species) recorded in the area (**Tables 5.4 & 5.6**).

Along the Dri river, *Strobilanthes sp.* had the highest density (726.8±205.1 shrubs ha⁻¹) followed by *Psychotria monticola* (642.3±134.6 shrubs ha⁻¹) and *Piper pedicellatum* (631.0±156.6 shrubs ha⁻¹). In terms of prominence value index (PVI) *Psychotria monticola* accounted for maximum value (36.9) followed by *Piper pedicellatum* (33.7) and *Strobilanthes sp* (32.0) (**Table 5.6**).

Along the Tangon river, *Piper pedicellatum* had the highest density (896.8±236.6 shrubs ha⁻¹) followed by *Rhynchotechum ellipticum* (303.2±112.9 shrubs ha⁻¹) and *Psychotria monticola* (245.2±87.4 shrubs ha⁻¹). In terms of prominence value index (PVI) *Rhynchotechum ellipticum* had maximum value (27.5) followed by *Psychotria monticola* (21.1) and *Phlocanthus curviflorus* (18.2) (**Table 5.6**).

S.		[Dri basin		Tangon basin			
No	Plant species	Shrub (ha ⁻¹ ±SE)	Frequency (%)	PVI	Shrub (ha ^{.1} ±SE)	Frequency (%)	PVI	
1	Psychotria monticola	642.3±134.6	32.4	36.9	245.2±87.4	14.5	21.1	
2	Piper pedicellatum	631.0±156.6	26.8	33.7	896.8±236.6	24.2	3.6	
3	Strobilanthes sp.	726.8±205.1	19.7	32.0	103.2±59.6	6.5	9.2	
4	Rhynchotechum ellipticum	163.4±55.3	14.1	12.4	303.2±112.9	14.5	27.5	
5	Oreocnide sp.	140.8±50.8	14.1	11.7	32.3±23.1	3.2	3.6	
6	Rubus ellipticus	140.8±46.2	12.7	11	0	0	0	
7	Phlocanthus curviflorus	11.3±11.3	1.4	1.1	187.1±63.5	14.5	18.2	

Table 5.6. Prominence Value Index of Shrub species of Etalin HEP Study Area

S.			Dri basin		Tar	ngon basin	
S. No	Plant species	Shrub	Frequency	PVI	Shrub	Frequency	PVI
NO		(ha ⁻¹ ±SE)	(%)	FVI	(ha⁻¹±SE)	(%)	FVI
8	Laportea sp.	146.5±62.8	8.5	9	129.0±51.9	9.7	12.4
9	Boehmeria macrophylla	39.4±21.5	5.6	4.2	174.2±41.8	9.7	14.6
10	Sambucus hookeri	39.4±25.6	4.2	3.4	90.3±32.4	16.1	14.6
11	Chloranthus elatior	16.9±16.9	1.4	1.3	129.0±52.7	9.7	12.4
12	Debregeasia sp.	174.6±80.5	9.9	9.8	71.0±37.4	6.5	7.5
13	Boehmeria longifolia	0	0	0	77.4±37.3	8.1	8.8
14	Solanum spirale	73.2±33.4	8.5	6.7	25.8±25.8	1.6	2.3
15	Others	259	30.3	26.8	367.9	40.1	43.3
	Total	3205.4			2832.4		

Climbers

In total 49 climber species were enumerated through quadrat sampling, which was 68% of the total climber species (72 species) recorded. Of these 49 species, 32 species and 39 species were recorded from Dri limb and Tangon limb, respectively. The 32 species formed 64% of the total recorded species (50 climber species) along the Dri limb, while 39 species recorded in the Tangon limb accounted for 70% of the total climber species (56 species) recorded in the area (**Tables 5.4 & 5.7**).

Along the Dri river, *Rhaphitophora decursiva* had the highest density (535.2±105.2 climbers ha⁻¹) followed by *Tetrastigma affine* (360.6±75.8 climber ha⁻¹) and *Piper clerki* (174.6±49.9 climber ha⁻¹). In terms of prominence value index (PVI) also *Rhaphitophora decursiva* had maximum value (32.2) followed by *Tetrastigma affine* (26.7) and *Piper clerki* (12.9) (**Table 5.7**).

Along the Tangon river, *Rhaphitophora decursiva* had the highest density (471.0±101.0 climber ha⁻¹) followed by *Tetrastigma affine* (451.6±96.2 climbers ha⁻¹) and *Rhaphidophora hookeri* (329.0±78.3 climbers ha⁻¹). In terms of prominence value index (PVI) *Rhaphitophora decursiva* had maximum value (26) followed by *Tetrastigma affine* (24) and *Rhaphidophora hookeri* (18.9) (**Table 5.7**).

S.	Plant species	D	ri basin		Tang	gon basin	
No		Climber	Frequency	PVI	Climber	Frequency	PVI
		(ha ⁻¹ ± SE)	(%)		(ha⁻¹ ± SE)	(%)	
1	Rhaphitophora decursiva	535.2±105.2	32.4	32.3	471.0±101.0	33.9	26
2	Tetrastigma affine	360.6±75.8	32.4	26.7	451.6±96.2	32.3	24
3	Piper clerki	174.6±49.9	16.9	12.9	174.2±87.6	8.1	8.1
4	Smilax sp.	129.6±40.7	16.9	11.2	64.5±39.2	4.8	3.6
5	Clematis acuminate	112.7±31.3	18.3	11.1	25.8±18.1	3.2	1.9
6	Stephania sp.	118.3±45.0	12.7	9.2	45.2±27.8	4.8	3.1
7	Periploca calophylla	152.1±62.9	8.5	8.9	0	0	0
8	Milletia pachycoyea	95.8±40.5	9.9	8.8	6.5±6.5	1.6	1.6
9	Piper sp 3.	118.3±47.1	9.9	8.2	0	0	0
10	Piper sylvertica	107.0±42.4	9.9	7.7	141.9±52.1	12.9	9.9
11	Rhaphidophora hookeri	56.3 ± 23.1	8.5	5.3	329.0±78.3	25.8	18.9

Table 5.7. Prominence Value Index of Climbers of Etalin HEP Study Area	Table 5.7. Prominence	Value Index o	f Climbers o	of Etalin HEP	Study Area
--	-----------------------	---------------	--------------	---------------	------------

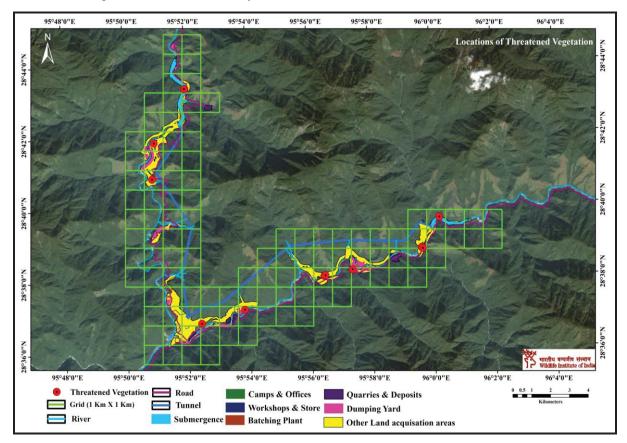
S.	Plant species	[Dri basin		Tan	gon basin	
No		Climber	Frequency	PVI	Climber	Frequency	PVI
		(ha ⁻¹ ± SE)	(%)		(ha ⁻¹ ± SE)	(%)	
12	Poilokospermum lanceolatum	22.5±13.6	4.2	2.4	271.0±71.1	27.4	18.7
13	Piper sp 4.	0	0	0	219.4±103.1	8.1	8.1
14	<i>Piper</i> sp 1	50.7±32.0	4.2	3.5	212.9±85.7	11.3	7.4
15	Piper rhytidocarpun	0	0	0	109.7±66.4	4.8	5
16	Embilya floribunda	78.9±36.4	8.5	6.1	0	0	0
17	Steptoleleon volabulis	39.4±30.2	2.8	2.5	77.4±47.7	4.8	4
18	Acacia pennata	22.5±15.8	2.8	1.9	77.4±31.6	11.3	6.3
19	Others	423		41.3	621.7		53.4
	Total	2596.9			3299.2		

5.2.1.2 Species Richness and Diversity

Dam submergence area (DSA) accounted for maximum value for tree (species richness 40; H'= 3.1) form, shrub (species richness 76; H'= 3.5) and herb layer (species richness 67; H'= 3.6) richness and diversity in the study area. Least value for tree (species richness 9; H'= 1.6) and shrub (species richness 17; H'= 2.5) layer richness and diversity was recorded at quarry sites (QS), while areas proposed for colony, camps and offices (CCO) recorded least values for species richness and diversity for herbaceous layer (species richness 17; H'= 2.4) (**Table 5.8**).

Impact Zones	Dri		Tar	ngon	Stu	idy area
	Species Richness	Shannon- Weiner diversity index (H')	Species Richness	Shannon- Weiner diversity index (H')	Species Richness	Shannon- Weiner diversity index (H')
PH & C						
Tree	26	2.9	-	-	26	2.9
Shrub	24	2.5	-	-	24	2.5
Herb	23	2.8	-	-	23	2.8
DSA						
Tree	29	2.8	21	2.7	40	3.1
Shrub	48	3.1	47	3.5	76	3.5
Herb	39	3.1	44	3.4	67	3.6
DS						
Tree	-	-	-	-	-	-
Shrub	-	-	-	-	-	-
Herb	-	-	-	-	-	-
DY						
Tree	12	2.2	19	2.6	24	2.8

Table 5.8. Species Richness and Diversity (Shannon-Weiner diversity index, H') across different Impact Zones of the Etalin HEP Study Area


Impact Zones	[Dri	Tar	ngon	Stu	dy area
	Species Richness	Shannon- Weiner diversity index (H')	Species Richness	Shannon- Weiner diversity index (H')	Species Richness	Shannon- Weiner diversity index (H')
Shrub	21	2.7	33	3.1	39	3.2
Herb	13	2.2	23	2.7	33	3.1
QS						
Tree	-	-	9	1.6	9	1.6
Shrub	-	-	17	2.5	17	2.5
Herb	-	-	16	2.6	16	2.6
W/B						
Tree	16	2.3	14	2.1	25	2.7
Shrub	21	2.6	15	2.2	29	2.6
Herb	24	2.8	24	2.9	38	3.3
000						
Tree	10	1.9	10	2.0	18	2.5
Shrub	19	2.4	9	1.8	25	2.7
Herb	5	1.5	12	2.3	17	2.4
ОТ						
Tree	9	1.9	17	2.5	25	2.8
Shrub	15	2.2	24	2.9	33	3.1
Herb	22	2.5	22	2.7	36	3.2
NIZ						
Tree	-	-	13	2.2	13	2.2
Shrub	-	-	25	23.00	25	3.00
Herb	-	-	28	2.8	28	2.8
Total						
Tree	70	3.3	70	3.4	95	3.6
Shrub	47	3.4	45	3.6	66	3.7
Herb	80	3.6	98	3.7	125	3.9

* PH & C=powerhouse and confluence, DSA=dam submergence site, DS= dam site, DY=dump yard, QS= quarry site, W/B= workshop and batching plant, CCO= camps, colony and office, OT= other land use, NIZ= Non-impact zone

5.2.1.3 Status of Species of Conservation Significance

The species of conservation significance includes species listed in IUCN Red List for plants, list as Schedule V, of Indian Wildlife Protection Act 1972 and endemic/range restricted species. In the present study one plant species, *Piper pedicellatum*, a Vulnerable (VU) species of IUCN Red List of plant, was mentioned as Vulnerable (VU) by IUCN, was recorded. Although due to its locally abundant density, BSI (http://bsienvis.nic.in/Database/E_3942.aspx), has not listed it as threatened. Nine species

has been listed as endemic (**Table 5.9**). **Map 5.5**, shows the distribution of the plant species of conservation significance within the study area,

Map 5.5: Locations of the Plants Species of Conservation Significance in Etalin HEP Study Area

Table 5.9: Status of Species of Conservation Significance (RET and endemic species) in Etalin	
HEP Study Area	

Species	Growth Form	Status
Piper pedicellatum	Shrub	Vulnerable
Bauhinia ovalifolia	Climber	Endemic
Calamus leptospadix	Climber	Endemic
Chirita macrophylla	Herb	Endemic
Loxostigma griffithii	Herb	Endemic
Phlogacanthus tubiflorus	Shrub	Endemic
Pilea insolens	Herb	Endemic
Piper petiolatum	Climber	Endemic
Rhaphidophora hookeri	Climber	Endemic


5.2.1.4 Overall Status of Plant Species in and around Etalin HEP Study Area

Overall 563 angiosperm species belonging to 368 genera and 110 families were reported from in and around the study area, which is based on the cumulative list of plant prepared by combining the present study list and the list collated from the secondary sources (EIA 2015) (**Table 5.10**). Of the total 563 species, 32% /180 species were common to both the present study and the list collated from previous studies (secondary source), 38.9% / 219 species were recorded only during the present study and 29.1% / 164 species were reported only from secondary source / previous studies (**Annexure 5.1**). Eight gymnosperms belonging to five families were reported from the area, of which one was recorded during the current study, while one was common to both the studies and six species were reported only from earlier study (**Annexure 5.2**). For pteridophytes, 31 species were listed of which 18 species were reported only by earlier studies, nine species were common to both the study and four species were recorded only in the present study (**Annexure 5.3**).

Taxonomic Status	Present Study	Secondary Source	Overall
Family	95	87	110
Genera	274	247	368
Species	398	342	563

Table 5.10: Overall Status of Plants in and around Etalin HEP Study Area, Dibang Valley, Arunachal Pradesh

Secondary Source: EIA Study 2015

5.2.2 Status of Entomofauna

5.2.2.1 Butterflies

a) Taxonomic Richness

In total, during this study, that covered two season survey, a total of 159 species of butterflies belonging to 77 genera spread over six families were identified, three of which are listed under the

Wildlife Protection Act, 1972 (WPA 72). Of the total 159 species recorded, 147 species (75 genera and six families) were recorded from Dri and 125 (67 genera and six families) from Tangon (**Table 5.11**), the former accounting for 92.5% of total species recorded and the latter about 79% (**Table 5.12**).

The Dri basin had higher species richness as compared to the Tangon basin, in spite of all the pre-existing anthropogenic stress, and ongoing highway expansion and extension till Anini. This could partly be due Dri having a wider valley and hence have more space vis-à-vis microhabitats and niches. Disturbance due to road construction could have led to formation of more edges, ecotonal areas, that could have attracted butterflies, of both forest as well as open areas, Further, the wetness of substrate and appearance of many small puddle due to moving of the earth also had attracted species due to availability of several localized nutrient-rich puddles, moisture rich sites and water seepages through the rocks. Most of the butterflies recorded were seen mud puddling on the moisture rich open patches on the road. Some species like Great Nawab, Blue Tit and Tabby were often seen feeding on bird droppings. They were also observed hovering around partially cleared forest areas and frequently settling in shaded areas. Another probable reason could be loss of forest cover along the road side that could have flushed out the forest interior species onto the open patches, which were recorded while crossing the open areas to reach areas with better cover, which is their regular home.

	e el Batterinee i		aay / li da
Sites	Family	Genera	Species
Dri basin	6	75	147
Tangon basin	6	67	125
Study Area	6	77	159

 Table 5.11: Taxonomic Richness of Butterflies in Etalin HEP Study Area

b) Species Richness in different Impact Zones

It is to be mentioned here that as the project is still in the proposed / planning stage, there are no sites that have been disturbed for any project-based activity, but for the study purpose the sites identified for particular project activity-based land uses, were assessed and sampled. On these lines, the areas which did not have any activity planned by the project are treated as Non-impact zones (NIZ), which accounted for maximum (Dri- 56.46%, Tangon- 58.4% and overall study area-67.9%) richness of species (**Table 5.12**). The richness and relative % of species in different impact zones, in addition to providing information on baseline, would serve to visualize the impacts due to various activities.

Table 5.12: Richness and Relative % of Butterfly Species recorded in different Impact Zone of
Etalin HEP Study Area

Impact Zones	River Dri		River	Tangon	Study Area		
	Richness	Relative %	Richness	Relative %	Richness	Relative %	
PH&C	57	38.8	-	-	57	35.9	
DSA	48	32.7	41	32.8	69	43.4	
DS	14	9.5	14	11.2	26	16.4	

Impact Zones	Riv	er Dri	River	Tangon	Study Area		
	Richness	Relative %	Richness	Relative %	Richness	Relative %	
QS	35	23.8	36	28.8	55	34.6	
DY	39	26.5	52	41.6	68	42.8	
W/B	26	17.7	16	12.8	33	20.8	
CCO	29	19.7	53	42.4	63	39.6	
ОТ	76	51.7	57	45.6	95	59.8	
NIZ	83	56.5	73	58.4	108	67.9	
TOTAL	147	100	125	100	159	100	
Comparison with Study Area	147	92.5	125	78.6	-	-	

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones

c) Similarity of Species between different Impact Zones (Jaccard's Similarity Index)

Dri river: Butterfly species showed a high similarity of 45% between OT and NIZ, followed by QS and DSA (35.2 %). The lowest percentage of similarity was between PH&C and DS (6.06%) (**Table 5.13**). However, this low similarity could be due to both sites being separated by fairly long distance, the overall less similarity between the different zone, reveals the significance of each zone as they have more species of butterflies unique to the respective sites. So, different project activities planned at these sites would have an impact on the species, in the form of loss of vegetation, degradation and disturbance, that could result in local disappearance of certain species and change in species compositions.

					-				
Impact Zones	PH&C	DSA	DS	QS	DY	WB	CCO	ОТ	NIZ
PH&C	100								
DSA	25	100							
DS	6.1*	13.0	100						
QS	24.7	35.2	11.6	100					
DY	21.5	27.9	10.6	25.4	100				
WB	20.3	21.3	8.3	24.5	23.1	100			
CCO	21.1	24.2	10.5	25.5	21.4	34.2	100		
ОТ	31.7	22.8	7.2	22.0	25	25.9	25	100	
NIZ	28.7	34.0	6.7	23.2	27.4	22.7	32.1	45**	100

Table 5.13. Similarity Matrix (in %) of Butterfly species between different Impact Zones along Dri
river in the Etalin HEP Study Area

*Least similarity; **Highest similarity; PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones

Tangon river: Along the Tangon river also the similarity between different project land use or impact zones was less, with all the sites showing similarity of < 40%, except for 43.2% similarity between NIZ and CCO (**Table 5.14**). More dissimilarity between impact zone show that the project activities in the respective zone would have an impact on species richness and composition. Care must be taken to keep this effect to the minimum, possibly taking proper precautions and mitigations.

 Table 5.14. Similarity Matrix (in %) of Butterfly species between different Impact Zones along

 Tangon river in the Etalin HEP Study Area

Impact Zones	DSA	DS	QS	DY	WB	CCO	ОТ	NIZ		
DSA	100									
DS	17.02	100								
QS	35.09	13.64	100							
DY	30.99	13.79	35.38	100						
WB	18.75	25	20.93	19.29	100					
000	27.03	15.52	28.99	40	13.11*	100				
ОТ	25.64	20.33	29.17	34.57	23.73	39.24	100			
NIZ	35.71	16	28.24	42.05	20.27	43.18**	35.42	100		

*Least similarity; **Highest similarity; PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, Colony and Offices; OT-Others; NIZ-Non-impact Zones

d) Status of Threatened Species

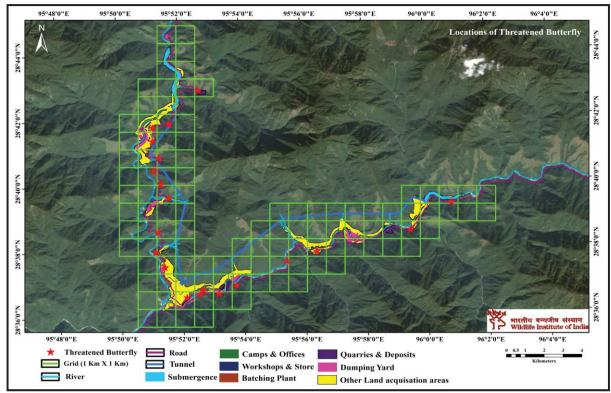
In the study area three butterfly species listed as Schedule I of the Wildlife Protection Act 1972, were recorded. Among these, Pale Jezebel (PJ) was reported from QS and DY, Scarce Jester in QS, DY, CCO, OT, and NIZ, and Spotted Black Crow was seen in DY, CCO, OT and NIZ (**Table 5.15 & Map 5.6**). The presence of RET or species of conservation significance along both the rivers, shows the importance of the habitat and plant species at each project activity site / impact zone for these species. Disturbance of any sort will lead to disappearance of that species, decrease in their numbers and overall decrease in species richness of butterflies as a whole.

Pale Jezebel, Scarce Jester and Spotted Black Crow were also recorded along the Dri and Tangon basins. In terms of significance of sites for these species, QS, DY, OT and NIZ are important sites along Dri, while DY, CCO, and NIZ are crucial sites of conservation along Tangon (**Table 5.15 & Map 5.6**). Before, starting to work on the particular site, care should be taken to create similar site condition in the adjoining area / try transplanting the herbs (perennials), grass and shrubs to an adjoining site if possible or recreate the conditions so that these butterfly species of conservation significance will have an abode to go and settle when disturbed here.

			Pres	ence o	f RET S	Species			
Impact Zones	River Dri			Riv	River Tangon			Study Area	
-	PJ	SJ	SBC	PJ	SJ	SBC	PJ	SJ	SBC
PH&C	-	-	-	-	-	-	-	-	
DSA	-	-	-	-	-	-	-	-	-
DS	-	-	-	-	-	-	-	-	-
QS	*	*		-	-	-	*	*	-
DY	*		*	*	*	-	*	*	*
W/B	-	-	-	-	-	-	-	-	-
ссо	-	-	-	-	*	*	-	*	*
ОТ	-	*	*	-	-	-	-	*	*
NIZ	-	*	*	*	*	*	*	*	*

Table 5.15: Status of RET Species in different Proposed Project Activities / Land Uses of Etalin HEP Study Area

*Presence of species; PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, Colony and Offices; OT-Others; NIZ-Non-impact Zones


e) Overall Status of Butterflies in and around Etalin HEP Study Area

Based on the present study a total of 159 butterfly species were recorded. The search for butterfly in the published secondary source (EIA Study 2016) resulted in collation of 45 species. These two lists were combined and the cumulative list of butterflies that is possible to occur in the Etalin HEP study area and its environs is 179 species belonging to 86 genera and six families (**Table 5.16**). Among these 25 species were common to both the present study and the list prepared based on secondary source, 20 species were reported only from secondary source and 134 were recorded only during the present study (**Annexure 5.4**).

Taxonomic Status	Present Study	Secondary Source	Overall
Family	6	6	6
Genera	77	32	86
Species	159	45	179

Table 5.16: Overall Status of Butterflies in and around Etalin HEP Study Area, Dibang Valley, Arunachal Pradesh

Secondary Source: EIA Study 2016

Map 5.6: Location of Butterfly Species of Conservation Significance in Etalin HEP Study Area

5.2.2.2 Odonates

a) Taxonomic Richness

In total 11 Odonate species were identified in the study area, belonging to five genera and two families. They were usually found near streams and water channels. They were also seen hovering over small puddles of water on the roads or damp areas along the trails in the sparsely dense forest. The Odonates were comparatively less along the Tangon river compared to the Dri river (**Table 5.17 & Annexure 5.5**), mainly due to more water availability and temporary puddles formed on the newly being constructed road.

Sites	Family	Genera	Species
Dri	2	5	11
Tangon	1	2	5
Study Area	2	5	11

Table 5.17: Taxonomic Richness of Odonates in the Etalin HEP Study Area

b) Species Richness in different Impact Zones

The comparison of Odonate species richness between impact zones showed highest richness in PH&C with eight species, accounting for almost 73% of total species recorded, followed by six species each from DSA, DY and OT. Along the Dri river, eight species were recorded from PH&C, representing close to 73% of total recorded from the river, with the least richness recorded from DS, QS and W/B (one species each), accounting for 9% of the total (**Table 5.18**).

Along the Tangon river, DSA had for maximum species richness with four species, representing 80% of total species recorded and minimum richness was recorded from DS, DY and OT with two species each, representing 40% of total species recorded from the river (**Table 5.18**). The richness and relative % information would serve as crucial links in understanding how odonate species will be impacted across various impact zones of the study area.

Import Zonco	Riv	er Dri	River	Tangon	Study Area		
Impact Zones	Richness	Relative %	Richness	Relative %	Richness	Relative %	
PH&C	8	72.7	-	-	8	72.7	
DSA	5	45.5	4	80	6	54.5	
DS	1	9.1	2	40	2	18.2	
QS	1	9.1	-	-	1	9.1	
DY	5	45.5	2	40	6	54.5	
W/B	1	9.1	-	-	1	9.1	
CCO	-	-	3	60	3	27.3	
ОТ	5	45.5	2	40	6	54.5	
NIZ	4	36.4	3	60	5	45.5	
TOTAL	11	100	5	100	11	100	
Comparison with Study Area	11	100	5	45.45	-	-	

Table 5.18: Richness and Relative % of Odonate species recorded in different Impact Zones of Etalin HEP Study Area

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, Colony and Offices; OT-Others; NIZ-Non-impact Zones

c) Similarity of Species between different Impact Zones (Jaccard's Similarity Index)

Dri river: The similarity of species among different impact zones along the Dri river showed maximum similarity of 50% between Non-impact Zone (NIZ) and Dump Yard (DY). This was followed by 44.4% between Dam Submergence Area (SBA) and Power House & Confluence (PH&C), and Others (OT) (**Table 5.19**). Even though the number of species recorded were less, the maximum similarity between impact zones along Dri was 50% or less, which makes all these different sites more crucial for the survival of these species. Hence, before getting into the implementation phase, care should be taken to provide alternative abode for these species and group.

Impact Zones	PH&C	DSA	DS	QS	DY	WB	CCO	ОТ	NIZ
PH&C	100								
DSA	44.4	100							
DS	12.5	20	100						
QS	-	-	-	100					
DY	27.3	42.9	-	-	100				
WB	-	-	-	100	-	100			
000	-	-	-	-	-	-	-		
ОТ	44.4	42.9	20	20	12.5*	20	-	100	
NIZ	50**	33.3	25	-	50**	-	-	28.6	100

Table 5.19: Similarity Matrix (%) of Odonate species between different impact zones along Dri river in the Etalin HEP Study Area

*Least Similarity, ** Highest similarity; PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, Colony and Offices; OT-Others; NIZ-Non-impact Zones

Tangon river: The similarity among species between different impact zones along Tangon river seems to be comparatively more than that was recorded for the impact zones along the Dri river, but this could be an influence of very poor richness along the Tangon river. However, along this river, based on this species richness, maximum similarity of 66.7% was reported among OT and Camps, Colony and Offices (CCO), NIZ & DY, CCO & DY (**Table 5.20**). As discussed above care must be taken before implementation phase to provide proper alternative habitat for the rehabilitation of these Odonate species.

Impact Zones	DSA	DS	QS	DY	WB	CCO	ОТ	NIZ
DSA	100							
DS	50	100						
QS	0	0	0					
DY	50	33.3	0	100				
WB	0	0	0	0	0			
CCO	20	25	0	66.7**	0	100		
ОТ	20*	33.3	0	33.3	0	66.7**	100	
NIZ	75	25	0	66.7**	0	50	25	100

Table 5.20: Similarity Matrix (%) of Odonate species between different Impact Zones along
Tangon river in the Etalin HEP Study Area

*Least Similarity, ** Highest similarity; PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, Colony and Offices; OT-Others; NIZ-Non-impact Zones

Further, one of the specific species of conservation interest in the Etalin HEP study area was the Wandering Glider (*Pantala* flavescens), which even though was a common dragonfly, is known for the longest insect migration, that moves from East Africa to South-East Asia, covering a distance of more than 3500 kms (Anderson, 2009). Hence, it becomes more critical to provide habitat for this species before start of project activity implementation phase.

5.2.2.3 Spiders

a) Taxonomic Richness

In total 113 species (43 identified) belonging to 88 genera (84 identified) from 25 families were recorded from the study area. Among the two basins in the study area, 90 species were recorded in the Tangon basin, which was 80% of total species in the study area. This was more compared to 68 species recorded along Dri river, which formed 60% of the total species (**Tables 5.21, 5.22 & Annexure 5.6**). This group being comparatively more sedentary would get effected due to any disturbance related to habitat degradation and loss, than the other groups dealt above. Further, this group, also known to efficiently occupy new niches, would need the disturbance in the area to decrease or settle down, so as to move to new niches, which is not the case within the Dri basin where the disturbance and other activities due to construction of road is going on. This disturbance is comparatively almost nil along Tangon river, where still undisturbed and pristine patches of natural forest are available, which could be the probable reason for more spider species along this river.

Sites	Family	Genera	Species	
Dri	22	58	68	
Tangon	23	74	90	
Study Area	25	88	113	

Table 5.21: Taxonomic Richness of Spiders in Etalin HEP Study Area

Species Richness in different Impact Zones

The comparison of spider species richness in each impact zone with the study area richness showed that DSA had 56 species that formed almost 50% of the species recorded in the study area, followed by 55 species (48.7%) in DY and 49 species (43.4%) in OT, remaining formed comparatively lesser percent to the total. Similarly, along the Dri river, 40 species were recorded from DY, which formed 58.8% of the total species, while least contribution of 13.2% each, was from Workshops, Stores and Batching Plants (W/B) and CCO. Along the Tangon river, the major contribution was from DSA 36 species forming 40% of species, followed by OT (**Table 5.22**). This analysis reveals the significance of each impact zone in terms of species richness of the study rivers vis-à-vis study area.

Table 5.22: Richness and Relative % of Spider species recorded in different Impact Zones of
Etalin HEP Study Area

Impact Zones	Riv	er Dri	River	Tangon	Study Area		
	Richness	Relative %	Richness	Relative %	Richness	Relative %	
PH&C	29	42.7	-	-	29	25.7	
DSA	32	47.1	36	40	56	49.6	

Impact Zones	Riv	er Dri	River	Tangon	Study Area		
	Richness	Relative %	Richness	Relative %	Richness	Relative %	
DS	10	14.7	14	15.6	18	15.9	
QS	12	17.6	14	15.6	21	18.6	
DY	40	58.8	29	32.2	55	48.7	
W/B	9	13.2	9	10	14	12.4	
CCO	9	13.2	29	32.2	32	28.3	
ОТ	28	41.2	34	37.8	49	43.4	
NIZ	23	33.8	29	32.2	43	38.1	
TOTAL	68	100	90	100	113	100	
Comparison with Study Area	68	60.2	90	79.7	-	-	

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, Colony and Offices; OT-Others; NIZ-Non-impact Zones

b) Similarity of Species between different Impact Zones (Jaccard's Similarity Index)

Dri River: Highest species similarity of spider species among different impact zones along the Dri river was between NIZ & OT (37.8%) and least similarity was between DS & DSA (**Table 5.23**), which was adjacent and in the same habitat. From the resultant large dissimilarities of species among different impact zones, it is apparent that the microhabitats and niches along with the habitat at each of the sites identified for different project activity are important for the survival/existence of the spiders. Hence proper care in the form of creating abodes replicating the present existing conditions would be crucial for their long-term existence.

Impact Zones	PH&C	DSA	DS	QS	DY	WB	CCO	OT	NIZ
PH&C	100								
DSA	29.8	100							
DS	14.7	13.5*	100						
QS	17.1	18.9	29.4	100					
DY	25.5	44	16.3	26.8	100				
WB	26.7	20.6	35.7	31.3	16.7	100			
CCO	18.8	24.2	26.7	31.3	22.5	20	100		
ОТ	21.3	36.4	18.8	25	36	19.4	27.6	100	
NIZ	23.8	34.2	32	34.6	40	28	28	37.8**	100

Table 5.23: Similarity Matrix (%) of spiders between different Impact Zones along Dri river in the
Etalin HEP Study Area

*Least Similarity, ** Highest similarity; PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, Colony and Offices; OT-Others; NIZ-Non-impact Zones

Tangon River: Along the Tangon river, highest similarity of 35.4% was observed between DY & DSA, followed by W/B & DS and least was between CCO & QS (**Table 5.24**). However, in the present scenario all these habitats along this river are undisturbed, so types of vegetation found at the specific sites were similar, hence the high similarity. An interesting observation was very frequent records of *Mesida culta* and *Leucauge decorate* from these areas, hinting towards colonization by resilient species that have adapted to cohabiting alongside anthropogenic disturbances.

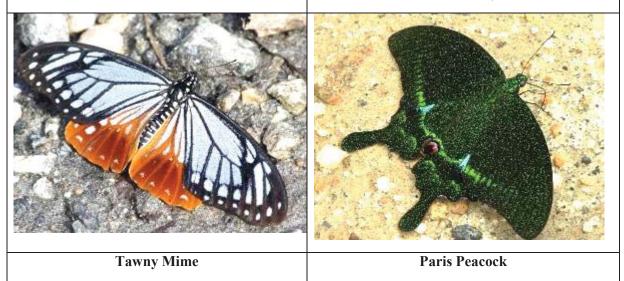
		in the	Etalin H	EP Study	Area			
Impact Zones	DSA	DS	QS	DY	WB	CCO	ОТ	NIZ
DSA	100							
DS	11.1	100						
QS	8.7	27.3	100					
DY	35.4**	22.9	19.4	100				
W/B	9.8	35.3	21.1	15.2	100			
ссо	20.8	22.9	7.5*	20.8	18.8	100		
ОТ	18.6	26.3	14.3	28.6	16.2	23.5	100	
NIZ	12.1	13.2	19.4	20.8	8.6	18.4	14.6	100

Table 5.24: Similarity Matrix (%) of Spiders between different Impact Zones along Tangon river
in the Etalin HEP Study Area

*Least Similarity, ** Highest similarity; PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, Colony and Offices; OT-Others; NIZ-Non-impact Zones

5.2.2.4 Moths

On the whole, 51 species of moths 45 genera (43 identified) from 12 families were recorded in and around the base camp, which are listed in the **Annexure 5.7**. As previously mentioned in the methods section, moths were surveyed from a very restricted area and the results have nonetheless been quite intensive. The high species richness within a restricted area clearly points to the possibility of much more diversity of this group in the study area.


Common Windmill

Eastern Purple Sapphire

Great Nawab

Veined Jay

5.2.3 Status of Herpetofauna

5.2.3.1 Amphibians

Within the study area, 14 species of amphibians belonging to 12 genera and six families were recorded. Ten species of amphibians were reported along both Dri and Tangon rivers (**Table 5.25**). Overall, the species richness was low, possibly as the entire monsoon season, the main active breeding period, was not covered for sampling due to time constraints of the rapid assessment.

Study Sites	Number of					
Sludy Siles	Family	Genera	Species			
Dri River	4	9	10			
Tangon River	5	9	10			
Study Area	6	12	14			

Richness of different Amphibian Groups

The amphibians reported from the study area belonged to six different major groups (**Annexure 5.8**). Among these, aquatic frogs (occupying pools & puddles of water) and tree frogs (occupying trees, bushes & grasses in moisture rich areas both forest & its edge), with four species each, were comparatively more common than other groups. The horned frog (prefer areas with leaf litter & humus) and pigmy frog (prefer moist areas with leaf litter and short grass with sparse herbs and shrubs) were represented by only one species each (**Table 5.26**).

The Dri River, the largest of the two rivers in the study area, harboured only five groups, with the aquatic frogs being richer (four species), closely followed by tree frogs. Along the Tangon River as well, amphibians were also represented by five groups, of which tree frogs (the most commonly observed group) were represented by three species (**Table 5.26**). Although, this data gives an indication about the groups present in the study area within the study period, sampling covering the entire monsoon season might reveal a different scenario.

Groups	Dri River	Tangon River	Study Area		
Toads	1	2	2		
Aquatic Frogs	4	2	4		
Horned Frogs	1	0	1		
Ranid Frogs	1	2	2		
Tree Frog	3	3	4		
Pigmy Frog	0	1	1		

Table 5.26. Richness Status of different Amphibian Groups

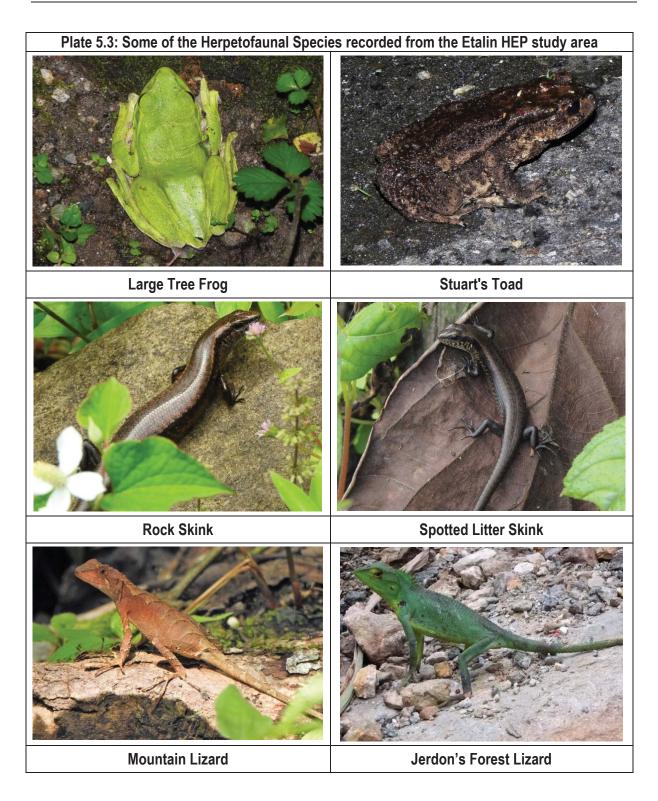
5.2.3.2 Reptiles

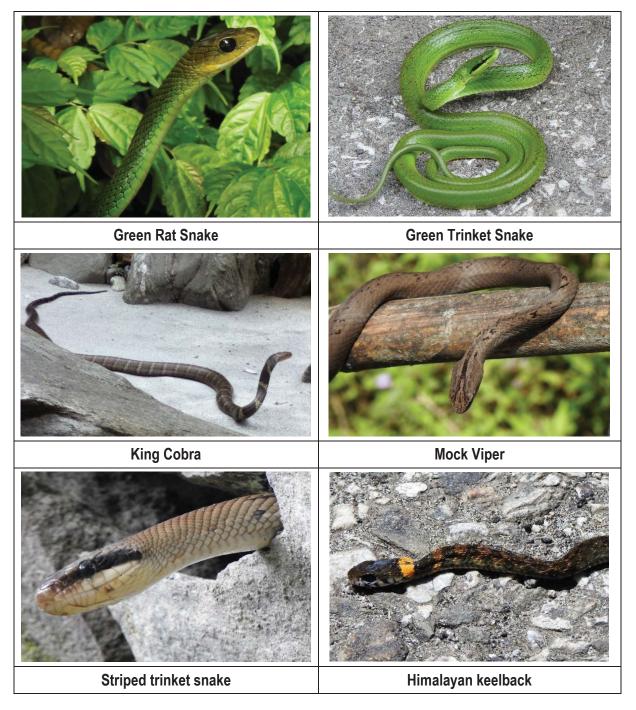
A total of 31 species of reptiles, belonging to 23 genera and seven families, were observed in the study area. Among the two rivers, 26 species were observed along Dri, while 23 species were observed along Tangon river. (**Table 5.27**).

Study Sites	Number of					
	Family	Genera	Species			
Dri River	7	22	26			
Tangon River	6	19	23			
Study Area	7	23	31			

Table 5. 27: Taxonomic Richness of Reptiles in EHEP study area

Richness of different Reptilian Groups


The 31 species of reptiles recorded during this assessment (**Annexure 5.8**) fall under six different groups, with non-venomous snakes being the most frequently encountered group (17 species), followed by skinks and venomous snakes (five species each) (**Table 5.28**). The snakes are generally found in the sites with rocks crevices, dense ground cover, open patches with moisture and leaf litter, and other sites with cover and partially/completely sunlit before dusk.


All the six groups were recorded along the Dri River, while along the Tangon river, only five groups were recorded (except monitor lizard). Along both rivers, non-venomous snakes were the commonly observed group (**Table 5.28**).

Groups	Dri	Tangon	Study Area
Agamid Lizards	2	1	2
Skinks	4	5	5
Monitor Lizard	1	0	1
Python	1	1	1
Non-venomous Snake	14	12	17
Venomous Snake	4	4	5
Total	26	23	31

5.2.3.3 Species of Conservation Significance

Species of conservation significance includes those listed, as Critically Endangered (CR), Endangered (EN) and Vulnerable (VU) in the IUCN Red List for amphibians and reptiles (RET species), Schedule - I of Indian Wildlife Protection Act (1972), and endemic species to Arunachal Pradesh and North East India, where the main study area is located. Three species of conservation significance, were recorded in the study area namely, Bengal Monitor Lizard (*Varanus bengalensis*; Schedule I species – IWPA 1972), Burmese Python (*Python bivittatus*; Vulnerable - IUCN and Schedule I – IWPA 1972) and King Cobra (*Ophiophogus Hannah*; Vulnerable - IUCN). All three were reported only through social surveys within the study area (**Annexure 5.8**)

5.2.4 Status of Birds

Based on inventory or listing of bird species, overall 230 species were recorded from the Etalin HEP study area (**Annexure 5.9**). However, the taxonomic richness, abundance status, foraging guild status and migratory status is dealt based on the quantitative information collected using point counts in both the basins. Since the vegetation was dense and detectability was less, birds were heard more than seen. In the following sections the quantitative data is used to describe the status of birds along both the Dri and Tangon Rivers, and the study area, through which the rivers are flowing.

a) Taxonomic Richness and Diversity

The total richness of species in the study area based on quantification was 87 species of 60 genera and 39 families, which were recorded at a low diversity of H'= 1.7. The birds from the two basins and the respective forest along the slopes, contributed to this richness of study area. The cumulative richness and diversity of the impact zones within the study area, showed a comparatively high richness in the Dam Submergence Area + Dam Site (DSA+DS) 33 species, and Non-impact Zone (NIZ) 31 species, while the diversity was high in NIZ and Other Area (OT) (**Table 5.29**).

Among the two river basins, more richness (48 species at a diversity of H'=1.3) was recorded in the Dri basin compared to the Tangon basin (39 species at a diversity of H'=1.1), which was less disturbed than the former (**Table 5.29**). In general, the richness and diversity of birds in the study area seem to be less, which is mainly due to the already continuing degradation and loss of habitat owing to the road expansion work along the Dri river and forests cleared as part of *Jhuming* cultivation and NFTP collection by the locals along the Tangon river. Further, in the areas with vegetation along both the rivers, the dense cover also influenced the visibility, in terms of poor detectability, which is probably also a reason for less richness.

Along Dri, Dam Submergence Area and Dam Site (DSA&DS) harboured more richness (26 species), followed by Camps, Colony and Office (CCO) and Workshops, Stores and Batching Plants (W/B), with least being in Dump Yard (DY). The diversity on the whole was less, with Quarry Site (QS) that recorded 10 species, reporting a comparatively more diversity (h'= 1.43) (**Table 5.29**), Thus showing that one or few species were dominant along this river, however a longer study would have probably shown the true scenario.

Richness in the impact zones along Tangon, showed more richness of 21 species in Other Areas (OT) followed by Non-impact Zone (NIZ). However, OT recorded comparatively more diversity (H'=1.79) (**Table 5.29**). On the whole along Tangon also the diversity was low revealing that birds present were dominated by one are few species.

Impact	9.0 11.0 11.0 1 19.0 19.0 26.0 1 8.0 10.0 10.0 1 5.0 6.0 6.0 1 14.0 16.0 21.0 1				Та	Tangon River			Study Area			
Zones	Fm	Gn	Sp	H'	Fm	Gn	Sp	H'	Fm	Gn	Sp	H'
PH&C	9.0	11.0	11.0	1.3					9.0	11.0	11.0	1.3
DSA+DS	19.0	19.0	26.0	1.2	12.0	13.0	15.0	1.0	22.0	25.0	33.0	1.1
QS	8.0	10.0	10.0	1.4	8.0	8.0	8.0	1.1	13.0	14.0	14.0	2.0
DY	5.0	6.0	6.0	1.2	12.0	11.0	12.0	1.2	13.0	15.0	16.0	1.8
W/B	14.0	16.0	21.0	1.4	7.0	13.0	15.0	1.0	19.0	24.0	29.0	1.2
CCO	16.0	19.0	22.0	1.4	8.0	9.0	10.0	1.1	19.0	25.0	29.0	1.9
ОТ	7.0	7.0	7.0	1.3	16.0	20.0	21.0	1.8	17.0	21.0	23.0	2.2
NIZ	12.0	14.0	16.0	1.3	17.0	19.0	20.0	1.6	21.0	26.0	31.0	2.1
TOTAL	33.0	40.0	48.0	1.3	31.0	34.0	39.0	1.1	39.0	60.0	87.0	1.7

Table 5.29: Richness and Diversity of Bird Species in Etalin HEP Study Area

Fm- Family, Gn – Genera, Sp – Species, H' – Shannon Diversity Index; PH&C-Power House and confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones

b) Abundance Status

The analysis of abundance of species was done through classifying the bird species based on the number of individuals sighted, into five different categories: Very Low (1-25), Low (26-50), Medium (50-75), High (76-100) and Very High (>100).

Dri River: The abundance status analysis showed that all the bird species recorded along the Dri river were found in very low to low abundance. The abundance status of birds in different impact zones showed very low abundance in all the zones, with Dam Submergence Area + Dam Site (DSA+DS) having low abundance compared to very low in other zones (**Table 5.30**). This poor abundance could probably be due to the existing disturbances prevailing along this river in the form of road construction/expansion, which is ongoing, that has led to loss of forest, in addition to detectability, as vegetation cover was dense, where ever present.

Table 5.30: Abundance categories, No. of species (Species Richnessand Relative (%) of Birds in
different Impact Zones along Dri river

Impact Zones	No. of Species	R%				
PH&C	very low (11)	100				
DSA+DS	low (26)	100				
QS	very low (10)	100				
DY	very low (06)	100				
W/B	very low (21)	100				
CCO	very low (22)	100				
ОТ	very low (07)	100				
NIZ	very low (16)	100				
TOTAL	very low (22)	45.8				
	low (26)	54.2				

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones; Very Low = 1-25 species, Low = 26-50 species

Tangon River: The abundance of birds recorded in different land acquisition for project-based activities along the Tangon river also showed that the abundance was very low across all the impact Zones (**Table 5.31**). The Tangon basin is relatively undisturbed from anthropogenic activity apart from the shifting cultivation and collection of NTFP from the forests. However, less species richness and abundance, indicates that the habitat although relatively undisturbed is not diverse enough to support different niches for diverse species, in addition to poor visibility that has influenced the detectability, due to dense vegetation cover.

Impact Zones	No. of Species	R%
PH&C	-	-
DSA+DS	very low (15)	100
QS	very low (08)	100
DY	very low (12)	100
W/B	very low (15)	100
CCO	very low (10)	100
ОТ	very low (21)	100
NIZ	very low (20)	100
TOTAL	very low (37)	100

Table 5.31: Abundance Categories, No. of species (Species Richness and Relative (%) of Birds in different Impact Zones along Tangon River

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, Colony and Offices; OT-Others; NIZ-Non-impact Zone: Very Low = 1-25 species

c) Foraging Guild Status of Birds

The foraging guild is based on the major food item the birds feed. The foraging guild gives information on the ecological services the bird species provide in an ecosystem.

Dri River: The foraging guild status of birds recorded along Dri river in the Etalin HEP study area, revealed that birds in the study area belonged to seven different guilds. Among these, most of the species recorded were insect feeders / insectivores (natural insect pest controllers (22 species / 45.8 %), followed by frugivores / fruit eaters (natural seed dispersers) and nectarivores / nectar feeders (natural pollinators) (**Table 5.32**). This also indirectly shows the type of habitat present in the area and whether it is flowering / fruiting season.

The analysis of foraging guild of birds in different impact zones along Dri, showed that in all the zone insectivores were dominant except for Quarry Site (QS), where nectarivores were more (**Table 5.32**). The reason was probably more trees in that QS site with flowers during the period of study, compared to other zones.

Impact Zones		Foraging guild						
	С	F	G	I	Ν	Р	0	- Total
PH&C								
Species Richness	0	1	0	8	0	1	1	11
Relative (%)	0.0	9.1	0.0	72.7	0.0	9.1	9.1	100
DSA +DS								
Species Richness	0	3	1	15	2	0	5	26
Relative (%)	0.0	11.5	3.8	57.7	7.7	0.0	19.2	100
QS								

Import Zapaa	Foraging guild							- ()
Impact Zones	С	F	G	G I		Р	0	- Total
Species Richness	0	2	0	2	5	0	1	10
Relative (%)	0.0	20.0	0.0	20.0	50.0	0.0	10.0	100
DY								
Species Richness	0	2	0	3	1	0	0	6
Relative (%)	0.0	33.3	0.0	50.0	16.7	0.0	0.0	100
W/B								
Species Richness	1	4	0	10	4	0	2	21
Relative (%)	4.8	19.0	0.0	47.6	19.0	0.0	9.5	100
000								
Species Richness	2	5	0	7	3	0	5	22
Relative (%)	9.1	22.7	0.0	31.8	13.6	0.0	22.7	100
ОТ								
Species Richness	0	3	0	2	1	0	1	7
Relative (%)	0.0	42.9	0.0	28.6	14.3	0.0	14.3	100
NIZ								
Species Richness	1	5	0	7	2	0	1	16
Relative (%)	6.2	31.3	0.0	43.8	12.5	0.0	6.2	100
Study Area								
Species Richness	2	10	1	22	7	1	5	48
Relative (%)	4.2	20.8	2.1	45.8	14.6	2.1	10.4	100

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones; No. of Sp – Number of Species; Foraging Guild: C – Carnivore, F – Frugivore, G – Granivore, I – Insectivore, N – Nectarivore, P = Piscivore, O – Omnivore

Tangon River: The status of birds in different foraging guild along the Tangon river showed that this river also, harboured birds of seven foraging guilds, with insectivores being predominant, followed by Omnivores / feeding on both insects or flesh, and fruits or other plant parts (duel services – natural pest controller and natural seed disperser). This clearly indicates the low availability of flowers and to some extent the fruiting trees in the area. The poor representation of carnivores, granivores, piscivores (**Table 5.33**) shows the less or non-availability of the habitats for the birds of these guilds, which was mentioned as reason for poor richness and abundance along this river.

Table 5.33: Bird Species Richness and Relative (%) of in different Foraging Guilds along Tangon River

7			For	aging g	uild			T ()
Impact Zones	С	F	G	Ι	Ν	Р	0	Tota
PH&C								
Species Richness	0	0	0	0	0	0	0	0
Relative (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
DSA+DS								
Species Richness	0	2	0	8	0	0	5	15
Relative (%)	0.0	13.3	0.0	53.3	0.0	0.0	33.3	100
QS								
Species Richness	1	2	0	5	1	0	1	8
Relative (%)	12.5	25.0	0.0	62.5	12.5	0.0	12.5	100
DY								
Species Richness	0	1	0	10	3	0	2	12
Relative (%)	0.0	8.3	0.0	83.3	25.0	0.0	16.7	100
W/B								
Species Richness	0	1	0	10	2	1	2	15
Relative (%)	0.0	6.7	0.0	66.7	13.3	6.7	13.3	100
000								
Species Richness	1	0	1	6	0	0	2	10
Relative (%)	10.0	0.0	10.0	60.0	0.0	0.0	20.0	100
ОТ								
Species Richness	0	4	1	11	2	0	3	21
Relative (%)	0.0	19.0	4.8	52.4	9.5	0.0	14.3	100
NIZ								
Species Richness	1	3	0	9	1	0	6	20
Relative (%)	5.0	15.0	0.0	45.0	5.0	0.0	30.0	100
Study Area								
Species Richness	1	5	1	20	3	1	6	37
Relative (%)	2.7	13.5	2.7	54.1	8.1	2.7	16.2	100

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones; No. of Sp – Number of Species; Foraging Guild: C – Carnivore, F – Frugivore, G – Granivore, I – Insectivore, N – Nectarivore, P = Piscivore, O – Omnivore

Study Area: In the entire study area also, as in the case of both Dri and Tangon basins, insectivores (52 species/59.8% of species), were dominant among of the seven foraging guilds that were represented. This was followed by frugivores, but with only 13.8% of the total species recorded. Rest of the guilds were poorly represented (**Table 5.34**); however, their presences shows that these niches for these birds even if available could be either available in patches/is naturally low.

•			• • •							
luura at 7 an a a		Foraging Guild Total								
Impact Zones	С	F	G	T	Ν	Ρ	0	lotal		
PH&C										
Species Richness	0	0	0	9	0	1	1	11		
Relative (%)	0.0	0.0	0.0	81.8	0.0	9.1	9.1	100		
DSA + DS										
Species Richness	0	0	1	20	4	0	8	33		
Relative (%)	0.0	0.0	3.0	60.6	12.1	0.0	24.2	100		
QS										
Species Richness	1	3	0	5	3	0	2	14		
Relative (%)	7.1	21.4	0.0	35.7	21.4	0.0	14.3	100		
DY										
Species Richness	0	2	0	10	2	0	2	16		
Relative (%)	0.0	12.5	0.0	62.5	12.5	0.0	12.5	100		
W/B										
Species Richness	1	6	0	14	3	1	4	29		
Relative (%)	3.4	20.7	0	48.3	10.3	3.4	13.8	100		
000										
Species Richness	3	6	1	10	4	0	5	29		
Relative (%)	10.3	20.7	3.4	34.5	13.8	0	17.2	100		
ОТ										
Species Richness	0	6	1	10	2	0	4	23		
Relative (%)	0	26.1	4.3	43.5	8.7	0	17.4	100		
NIZ										
Species Richness	2	6	0	15	6	0	2	31		
Relative (%)	6.5	19.4	0	48.4	19.4	0	6.5	100		
Study Area										
Species Richness	3	12	4	52	7	2	7	87		
Relative (%)	3.4	13.8	4.6	59.8	8	2.3	8	100		

Table 5.34: Bird Species Richness and Relative (%) in different Forgaina Guild in the Study Area
	, in an creat rolaging ound in the olday Area

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones; No. of S p – Number of Species; Foraging Guild: C – Carnivore, F – Frugivore, G – Granivore, I – Insectivore, N – Nectarivore, P = Piscivore, O – Omnivore

d) Migratory Status of Birds

The migratory status is detailed based on the season the birds visit the study area / when the birds were observed in the study area, within the seasons covered as part of this study.

Dri River: Along the Dri river, of the total 48 species of birds recorded, maximum (30 species) were residents forming 62.5 % of the total, followed by summer visitors (birds that were seen only in the summer season) and winter visitors (birds observed only during winter). Among the different impact zones, a similar scenario was observed with resident birds being more in all zones except for PH&C, where winter visitors were more (six species / 54.5%) than residents. Winter visitors were not recorded in DY, QS, OT and NIZ, while summer visitors were not recorded from PH&C and QS (**Table 5.35**). However, this might not be true, as the study was a rapid assessment and only for four months covering only parts of different seasons. But it is evident that the study area and both the rivers provide habitat, also for bird species that visit in different seasons, either for nesting (summer season visitors) or feeding (winter visitors).

Import Zanaa	Migratory Status						
Impact Zones	Residents	Summer Visitors	Winter Visitors	Total			
PH&C							
Species Richness	5	0	6	11			
Relative (%)	45.5	0.0	54.5	100			
DSA+DS							
Species Richness	17	3	6	26			
Relative (%)	65.4	11.5	23.1	100			
QS							
Species Richness	10	0	0	10			
Relative (%)	100.0	0.0	0.0	100			
DY							
Species Richness	4	2	0	6			
Relative (%)	66.7	33.3	0.0	100			
W/B							
Species Richness	13	6	2	21			
Relative (%)	61.9	28.6	9.5	100			
000							
Species Richness	17	3	2	22			
Relative (%)	77.3	13.6	9.1	100			

Table 5.35. Migratory Status of Bird Species along Dri River

Impact Zanaa	Migratory Status					
Impact Zones	Residents	Summer Visitors	Winter Visitors	Total		
ОТ						
Species Richness	6	1	0	7		
Relative (%)	85.7	14.3	0.0	100		
NIZ						
Species Richness	12	4	0	16		
Relative (%)	75.0	25.0	0.0	100		
Study Area						
Species Richness	30	10	8	48		
Relative (%)	62.5	20.8	16.7	100		

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones

Tangon River: The birds recorded along the Tangon river also showed that the residents were more (21 species /56.8 % of species) followed by winter visitors and summer visitors. A similar trend was observed in all the impact zones (**Table 5.36**). However, this could not be the true scenario as the study was only for four months and did not cover all season fully. But from this it was evident that there were bird species visiting the habitats alongTangon river, vis-à-vis study area, in specific seasons.

Import Zanaa	Migratory Status					
Impact Zones	Residents	Summer Visitors	Winter Visitors	Total		
PH&C						
Species Richness	0	0	0	0		
Relative (%)	0.0	0.0	0.0	0.0		
DSA +DS						
Species Richness	10	0	5	15		
Relative (%)	66.7	0.0	33.3	100		
QS						
Species Richness	5	1	2	8		
Relative (%)	62.5	12.5	25.0	100		
DY						
Species Richness	6	0	6	12		
Relative (%)	50.0	0.0	50.0	100		
W/B						
Species Richness	7	5	3	15		
Relative (%)	46.7	33.3	20.0	100		

 Table 5.36. Migratory Status of Bird Species along Tangon River

Import Zanaa	Migratory Status					
Impact Zones	Residents	Summer Visitors	Winter Visitors	Total		
000						
Species Richness	6	0	4	10		
Relative (%)	60.0	0.0	40.0	100		
ОТ						
Species Richness	9	7	5	21		
Relative (%)	42.9	33.3	23.8	100		
NIZ						
Species Richness	13	3	4	20		
Relative (%)	65.0	15.0	20.0	100		
Study Area						
Species Richness	21	6	10	37		
Relative (%)	56.8	16.2	27.0	100		

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones

Study Area: In the overall study area also, residents were more compared to the winter visitors and summer visitors. A similar scenario was observed in the case of diverse project land use / impact zones (**Table 5.37**). The reasons for the same was discussed above, but it is apparent that bird species composition various between seasons, due to some birds visiting the study area in specific seasons, and the availability of habitat and niche for these visitors. Further, this also indicated that a major proportion of the birds recorded in the study area are permanently residing in the area, thereby relying on the local resources to fulfil their basic needs. Therefore, habitat conservation and mitigation for habitat loss is of utmost importance for holistically safeguarding the environment as that would help ensure stable population trends for the avifauna in the long run.

Table 5.37: Migratory Status	of Bird Species in the Study Area
------------------------------	-----------------------------------

Migratory Status					
Residents	Summer Visitors	Winter Visitors	Total		
pecies Richness 5		6	11		
45.5	0.0	54.5	100		
20	3	10	33		
ative (%) 60.6		30.3	100		
11	1	2	14		
	5 45.5 20 60.6	Residents Summer Visitors 5 0 45.5 0.0 20 3 60.6 9.1	Residents Summer Visitors Winter Visitors 5 0 6 45.5 0.0 54.5 20 3 10 60.6 9.1 30.3		

Impact Zapas	Migratory Status					
Impact Zones	Residents	Summer Visitors	Winter Visitors	Total		
Relative (%)	78.6	7.1	14.3	100		
DY						
Species Richness	8	2	6	16		
Relative (%)	50.0	12.5	37.5	100		
W/B						
Species Richness	16	8	5	29		
Relative (%)	55.2	27.6	17.2	100		
CCO						
Species Richness	22	3	4	29		
Relative (%)	75.9	10.3	13.8	100		
ОТ						
Species Richness	14	6	3	23		
Relative (%)	60.9	26.1	13.0	100		
NIZ						
Species Richness	21	6	4	31		
Relative (%)	67.7	19.4	12.9	100		
Study Area						
Species Richness	52	16	19	87		
Relative (%)	59.8	18.4	21.8	100		

PH&C-Power House and Confluence; DSA-Dam Submergence Area; DS-Dam Site; QS-Quarry Site; DY-Dumping Yard; W/B- Workshops, Stores and Batching Plants; CCO- Camps, colony and Offices; OT-Others; NIZ-Non-impact zones

5.2.4.1 Bird Species Richness based on Inventory

Based on inventory or listing of bird species, overall 230 species were recorded from the Etalin HEP study area. Further, among these 230 species, 205 species were birds of terrestrial ecosystem, while the remaining 25 species were aquatic or dependent on aquatic ecosystem (**Annexure 5.9**).

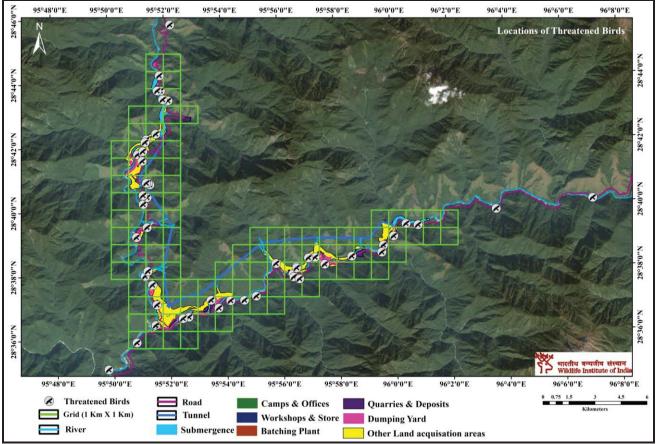
5.2.4.2 Overall Species Richness

On the whole the cumulative richness of birds that are possible to occur in and around the Etalin HEP study area was 237 species of which 204 species were sighted exclusively during this study and seven species were reported only from (earlier study (EIA 2015). Remaining 26 species were common to this study as well as the list of 33 species collated from the existing report (EIA 2015) (**Annexure 5.9**).

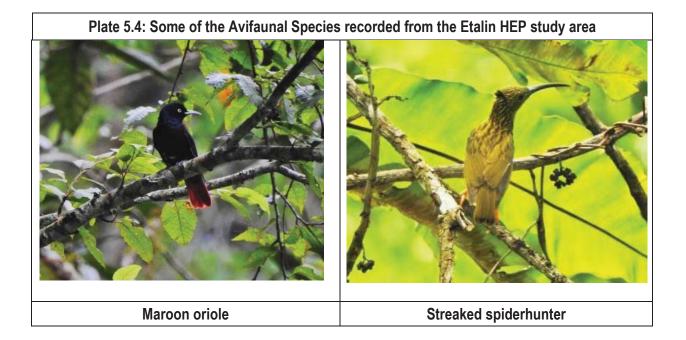
5.2.4.3 Species of Conservation Significance

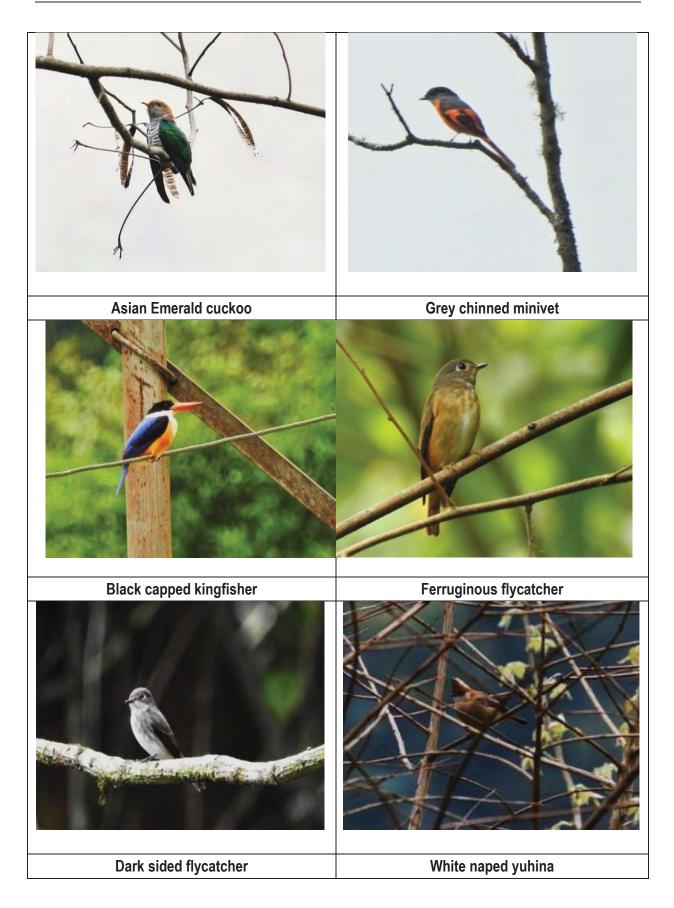
Species of conservation significance includes those listed, as Critically Endangered (CR), Endangered (EN) and Vulnerable (VU) in the IUCN Red List for Birds (RET species), Schedule - I of Indian Wildlife Protection Act (1972), and endemic species to Arunachal Pradesh and North East India, where the main study area is located.

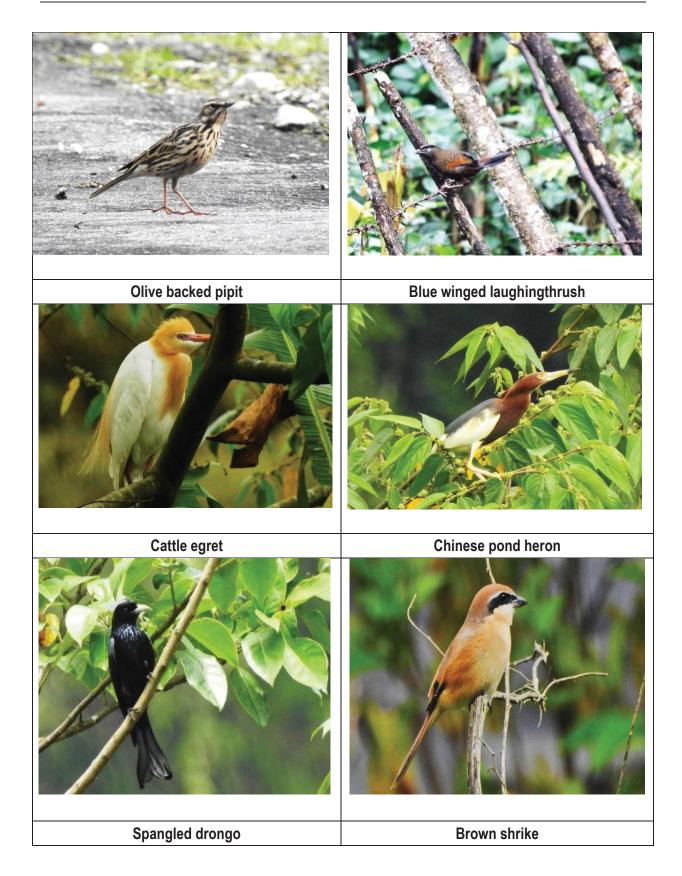
In this category, there were five bird species among the total 87 species recorded in the study area, which were threatened, as these were listed as Schedule – I species of the Indian Wildlife Protection Action 1972. Among these species of conservation significance, three species were recorded from the Dri basin and three species from the Tangon basin, with Grey Peacock Pheasant (*Polyplectron bicalcaratum*) being present in both (**Table 5.38**). However, these were observed only once, based on which the habitat specifics for them within the study area cannot be conclusively deduced, as they are of varied foraging guilds and have varied habitat preferences (Ali & Ripley, 1988), it is important to conserve and preserve them. The habitat, features/characteristics present at the sites where these species were located needs to be established/replicated at the adjoining sites, if the original sites fall within the impact zones, or protected and preserved in the case of areas outside the impact zones.

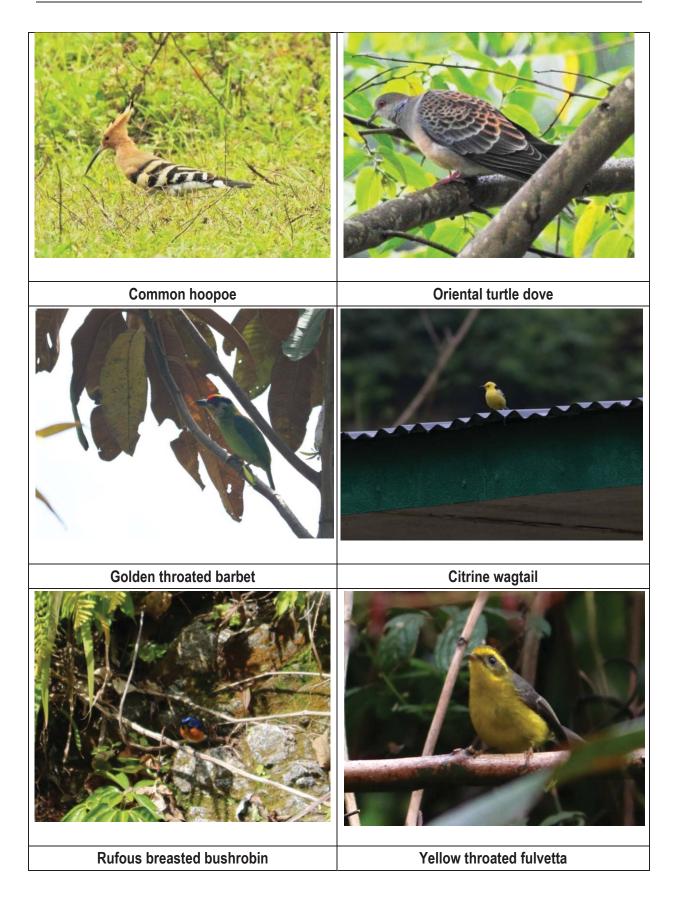

In addition to the above-mentioned species of conservation significance, there were seven more species that were listed as Near Threatened, in the IUCN Red List, which are birds, if their ecological needs are not taken care off, then they will also come into verge of extinction. So, any conservation and management plan suggested should also be ecologically beneficial also to these species (**Table 5.38**).

Endemic species: Of the 16 range restricted species of Eastern Himalayas (Stattersfield *et al.*, 1998), that are resident in Arunachal Pradesh, six species were sighted and recorded in the study area (**Tables 5.38**). The endemic species are of conservation significance, as these birds are found only in this region and have specific habitat features not found anywhere else and above all restricted to specific areas.


Of these four were present along the Dri river and all six species along Tangon river. Among these White-naped Yuhina (*Yuhina bakeri*) were sighted more frequently compared to others, followed by Yellow-vented Warbler (*Phylloscopus cantator*) (**Table 5.38**). White-naped Yuhina were sighted often in mixed flocks comprising of other yuhinas, warblers, fulvettas and babblers that have been recorded in the study area. Rest of the four were with one or two individuals. Hence, it is very crucial and critical to preserve these specific sites and the areas with these species, where some project activities have been planned, through establishing and replicating through restoration of habitat of these species and their conspecifics, in the adjoining areas. If the habitat is favourable, only then conspecifics that favour the presence of avifauna would be available, which would ensure their presence in the study area despite anthropogenic activities. Location of birds of conservation significance are shown on the map (**Map 5.7**).


Table 5.38. Bird Species of conservation significance recorded in the Zol of Etalin HEP


S.	Common Name		No. of Indiv	viduals	Schedule-I	Fudamia	IUCN
No	(Scientific Name)	Dri	Tangon	Study Area	(IWPA 1972)	Endemic	(RET)
1	Crested Goshawk (Accipiter trivirgatus)	-	01	01	\checkmark		
2	Eurasian curlew (<i>Numenius arquata</i>)	01	-	01			\checkmark
3	Eurasian sparrowhawk (<i>Accipiter nisus</i>)	01	-	01	\checkmark		
4	Grey peacock pheasant (Polyplectron bicalcaratum)	01	01	02	\checkmark		
5	Himalayan vulture (Gyps himalayensis)	-	01	01			\checkmark
6	Hoary throated barwing (Actinodura nipalensis)	01	01	02		\checkmark	
7	Kalij pheasant (<i>Lophura leucomelanos</i>)	11	-	11	\checkmark		
8	Rufous throated fulvetta (Schoeniparus rufogularis)	01	01	02		\checkmark	
9	Rusty bellied shortwing (Brachypteryx hyperythra)	-	01	01		\checkmark	\checkmark
10	Shikra (<i>Accipiter badius</i>)	-	01	01	\checkmark		
11	Striped tit babbler (<i>Mixornis gularis</i>)	01	-	01			\checkmark
12	Ward's trogon (<i>Harpactes wardi</i>)	-	01	01		\checkmark	\checkmark
13	Wedge billed babbler (Sphenocichla humei)	01	-	01			\checkmark
14	White naped yuhina (<i>Yuhina bakeri</i>)	08	10	18		\checkmark	
15	Yellow rumped honeyguide (Indicator xanthonotus)	01	-	01			\checkmark
16	Yellow vented warbler (Phylloscopus cantator)	07	02	09		\checkmark	



Map 5.7: Location of Bird Species of Conservation Significance in Etalin HEP Study Area

5.2.5 Status of Mammals

a) Species Richness

Within the Zol, 21 species of mammals of 19 genera and 15 families was observed (**Table 5.39**). Of these, the camera trap method captured the presence of 14 species (under 12 genera and 12 families) along the Dri River and 17 species (under 15 genera and 13 families) along the Tangon river (**Plate 5.2**). Rest of the seven species were direct sightings. The estimates of species richness exclude an unidentified bat species and the Mithun (*Bos frontalis*), semi-wild cattle which is frequently seen in the forests areas as well as in and around the villages.

Parameters	Dri	Tangon	Study area
Family	12	13	15
Genera	12	15	19
Species	14	17	21

Table 5.39: Species Richness of Mammals in Dri and Tangon basins of Etalin HEP Study Area

b) Species Distribution

Species distribution estimates are based on the number of capture locations of a species through camera traps. In total, 14 species were captured 166 times (total capture) through camera traps. These captures occurred at 63 locations within the ZoI, with 32 locations (12 species) along the Dri River and 31 locations (10 species) along the Tangon River, thereby not showing variation in species distribution between the two rivers (**Table 5.40**).

In terms of relative species richness (R%; ratio of no. of capture locations of a species to total capture locations), four species (out of 14) namely, Indian Muntjac (19.0%), Yellow-throated Marten (17.5%), Himalayan Palm Civet (17.5%) and Leopard Cat (12.7%), showed the widest distribution within the study area. Their relative species richness values were higher than the mean relative species richness value of the study area (7.14%) and constituted 66.7% of the total capture locations (**Table 5.40**).

S. No	Species	Common name	Capture	Ν	- R%		
5. NU			Frequency	Dri	Tangon	SA	K 70
1	Capricornis thar	Himalayan serow	4	4	-	4	6.4
2	Cuon alpinus	Indian wild dog	1		1	1	1.6
3	Macaca assamensis	Assam macaque	14	1	2	3	4.8
4	Muntiacus gongshanensis	Gongshan muntjac	2		2	2	3.2
5	Muntiacus muntjak	Indian muntjac	25	5	7	12	19.0
6	Catopuma temmincki	Asian golden cat	3	2	1	3	4.8

Table 5.40: Status of Mammalian Species Distribution within Etalin HEP Study Area

C No	Species	Common nome	Capture	N	D 0/		
S. No	Species	Common name	Frequency	Dri	Tangon	SA	- R%
7	Prionailurus bengalensis	Leopard cat	33	4	4	8	12.7
8	Herpestes auropunctatus	Small Indian mongoose	1	1		1	1.6
9	Aherurus marcourus	Brush tailed porcupine	4	1	1	2	3.2
10	Manis pentadactyla	Chinese pangolin	1	1		1	1.3
11	Martes flavigula	Yellow throated marten	32	5	6	11	17.5
12	Sus scrofa	Indian wild pig	2	2		2	3.2
13	Ursus thibetanus	Himalayan black bear	2	1	1	2	3.2
14	Paguma larvata	Himalayan palm civet	28	5	6	11	17.5
	Total		166	32	31	63	100
	Mean		-	-	-	4.5	7.14

c) Species abundance

Abundance values were calculated based on the capture frequency of a species using camera traps and were grouped into five abundance categories: very low (1-5 captures), low (6-10), medium (11-15), high (16-20) and very high (> 21). Along the Dri river, 10 species/71.4% of the species captured fall under the very low abundance category, while the remaining (4 species) fall under low (2 species) or medium category (2 species). Along the Tangon River, 12 species/70.6% of the species captured had low abundance, however, the rest (five species) had medium to very high abundance values. Overall, within the study area, most of the species (15 species) fell under the low abundance category (71.4%) and only four species (<20%) had very high abundance values (**Table 5.41**).

Table 5.41: Abundance categories of mammalian species within the study area.							
Abundance categories	Dri	R %	Tangon	R%	Study area	R%	

Abundance categories	Dri	R %	Tangon	R%	Study area	R%
Very Low (1-5 captures)	10	71.4	12	70.6	15	71.4
Low (6-10)	2	14.3	0	0.0	1	4.8
Medium (11 -15)	2	14.3	2	11.8	1	4.8
High (16-20)	0	0.00	1	5.8	-	-
Very High (> 21)	0	0.00	2	11.8	4	19.0
Total	14	100	17	100	21	100

Of the total number of species captured (21 species), in the study area five species namely, Leopard cat (*Prionailurus bengalensis:* 10 encounters in Dri and 23 in Tangon), Yellow throated marten

(*Martes flavigula* 11- Dri and 21- Tangon), Himalayan palm civet (*Paguma larvata*: 10- Dri and 18-Tangon) and Indian muntjac (*Muntiacus muntjak*: 13- Dri and 12- Tangon) were capture most frequently along both rivers. Rest of the species (76%) had very low abundance values and were captured less than 10 times by camera traps. Indian wild dog, Small Indian Mongoose, Chinese pangolin were captured only once in the camera traps (**Table 5.42**).

S.	Family and Common name Scientific Name		Ν	Nature		
No			Dri	Tangon	SA	of Record
Bovidae						
1	Capricornis thar	Himalayan serow	3	1	4	CT
Canid	lae					
2	Cuon alpinus	Indian wild dog	-	1	1	CT
Cerco	pithecidae					
3	Macaca assamensis	Assam macaque	3	11	14	CT /DS
Cervi	dae					
4	Muntiacus gongshanensis	Gongshan muntjac	-	2	2	СТ
5	Muntiacus muntjak	Indian muntjac	13	12	25	CT /DS
Felida	ae					
6	Catopuma temmincki	Asian golden cat	2	1	3	CT
7	Prionailurus bengalensis	Leopard cat	10	23	33	CT/DS
Herpe	estidae					
8	Herpestes auropunctatus	Small Indian mongoose	1	-	1	СТ
Hystr	icidae					
9	Aherurus marcourus	Brush tailed porcupine	2	2	4	CT
Manic	lae					
10	Manis pentadactyla	Chinese pangolin	1	-	1	CT
Murid	lae				_	
11	Rattus nitidus	Himalayan field rat		1	1	DS
Muste	elidae				_	
12	Lutrogale perspicillata	Smooth coated otter	1	-	1	DS
13	Martes flavigula	Yellow throated marten	11	21	32	CT/DS
Sciur	idae					

S.	Family and	_	No of captures			Nature	
No	Scientific Name			Tangon	SA	of Record	
14	Ratufa bicolor	Black giant squirrel		1	1	DS	
15	Callosciurus pygerythrus	Hoary-bellied Squirrel	2	5	7	DS	
16	Callosciurus erythraeus	Pallas's squirrel	-	2	2	DS	
17	Tamiops macclellandi	Himalayan Striped Squirrel		1	1	DS	
Soric	Soricidae						
18	Crocidura attenuate	Asian grey shrew		1	1	DS	
Suida	e						
19	Sus scrofa	Indian wild pig	2	-	2	СТ	
Ursid	ae						
20	Ursus thibetanus	Himalayan black bear	1	1	2	СТ	
Viver	ridae						
21	Paguma larvata	Himalayan palm civet	10	18	28	СТ	
	Total Species		14	17	21		
	Total encounters		62	104	166		

CT-Camera Trap, DS – Direct Sightings.

Abundance based on total Camera Trap Nights: Abundance estimation was also done based on the capture rate (ratio of total captures to total camera trap nights). The estimation showed that, along both rivers (Dri = 0.14 and Tangon = 0.11) as well as within the study area (0.11), less than one capture or one species per 1552 trap nights was recorded, indicating very low abundance of mammals in the study area (Table 5.43).

Table 5.43. Abundance Status of Mammals based on Camera Trap Nights within Etalin HEP Study Area

otady / tou						
Sampling area	Total Camera trap nights	Total capture	Capture rate			
Dri River	430	62	0.144			
Tangon River	981	104	0.106			
Confluence	141	-	-			
Total	1552	166	0.106			

d) Checklist of Mammal

The checklist for mammals within the study area (Annexure 5.10) was prepared by including the species observed in the present study and those reported by secondary sources. The list of species

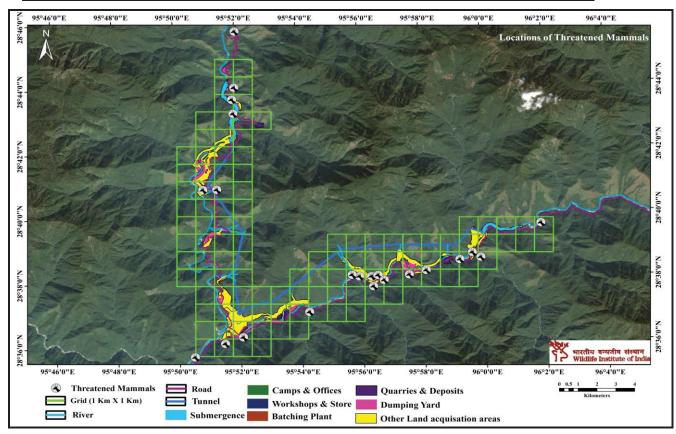
recorded during the study was based on mammal survey (direct sightings and camera trap study) and those documented through interviews with local people with the help of field guides (Menon 2014). Social surveys resulted in a list of 34 species, out of which 12 species were excluded since they were restricted to upper reaches, which fall outside the study area (**Table 5.44**).

List of species documented via secondary sources includes species report in the EIA report (2015). Among all mammals list in EIA report, those occurring at higher altitudes outside the study area and/or are unlikely to occur in the study area were excluded. Mammal species mentioned in the Dibang Wildlife Sanctuary management plan were not included in the checklist as the sanctuary has a large geographic area (4149 km²) and is spread across a higher altitudinal range (1800 – 5000m), which is located far from the outer boundary of the study area (crow fly distance > 10km).

Finally, the resulting checklist of mammals within the study area contains a total of 29 species belonging to 26 genera and 17 families (**Table 5.44 & Annexure 5.10**).

Table 3.44. Overall Manimal Species Richness Within Etallin HEF Study Area							
Status	Present Study		Study	Secondary Source	Overall		
	Mammals Survey	Social Survey	List	(EIA 2015)	Overall		
Families	15	11	16	10	17		
Genera	20	20	24	10	26		
Species	22	22	27	11	29		

Table 5.44: Overall Mammal Species Richness within Etalin HEP Study Area


e) Species of conservation significance

Out of 21 mammals recorded in the study area, five species are listed as threatened under different categories of the IUCN Red list (**Table 5.45**). Of these, one species is Critically Endangered (CR), one Endangered (EN), two Vulnerable and one species is Near Threatened. Three species, Himalayan serow-*Capricornis thar,* Asian golden cat- *Catopuma temmincki* and Leopard cat *Prionailurus bengalensis*, were listed as Schedule I of the Indian Wildlife Protection Act (IWPA, 1972).

Despite the low abundance values of the eight species of conservation significance within the study area (**Table 5.45**), their mere presence commands dedicated conservation efforts within the study area as well as within the Dibang valley. Locations of mammal species of conservation significance are shown in the **Map 5.8**.

S.	Scientific Name	No. of	Conturo Doto	Conservation significance		
No	Scientinc Name	Captures	Capture Rate	IUCN	IWPA	
1	Capricornis thar Himalayan serow	04	0.002	-	Sch I	
2	<i>Cuon alpinus</i> Indian wild dog	01	0.0006	EN	-	
3	<i>Macaca assamensis</i> Assam macaque	14	0.009	NT	-	
4	<i>Catopuma temmincki</i> Asiatic golden cat	03	0.001	-	Sch I	

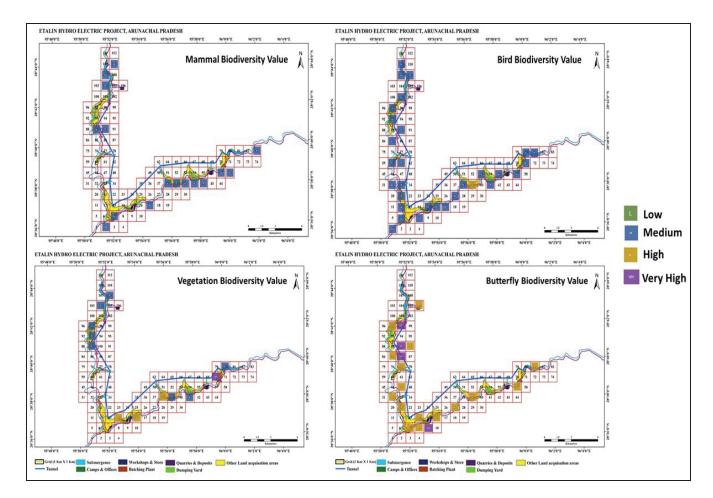
S.	Scientific Name	No. of	Conturo Doto	Conservation	n significance
No	Scientific Name	Captures	Capture Rate	IUCN	IWPA
5	<i>Prionailurus bengalensis</i> Leopard cat	33	0.02	-	Sch I
6	<i>Manis pentadactyla</i> Chinese pangolin	01	0.0006	CR	-
7	Lutrogale perspicillata Smooth coated otter	01	0.0006	VU	-
8	<i>Ursus thibetanus</i> Himalayan black bear	02	0.001	VU	-
	Total	61		5	3

Map 5.8: Location of Mammal Species of Conservation Significance in Etalin HEP Study Area

However, as mentioned before, secondary sources listed 10 mammal species that are unlikely to occur within the study area, it is essential that long-term monitoring and conservation efforts are planned particularly for species of conservation significance (**Table 5.46**) such as Mishmi Takin (endemic species), Alpine Musk Deer, Red goral, Clouded Leopard, Snow Leopard, Spotted Linsang, in and around the study area.

S.	Colontifio nome	C	Conservat	tion significance
No	Scientific name	Common name	IUCN	IWPA
1	Ailurus fulgens	Red panda	EN	Sch I
2	Budorcas taxicolor taxicolor	Mishmi Takin ^E	VU	Sch I
3	Moschus chrysogaster	Alpine Musk Deer	EN	Sch I
4	Naemorhedus baileyi	Red goral	VU	-
5	Neofelis nebulosi	Clouded Leopard	VU	Sch I
6	Panthera pardus	Common Leopard	VU	Sch I
7	Panthera tigris	Bengal tiger	EN	Sch I
8	Panthera unsia	Snow Leopard	VU	Sch I
9	Pardofelis marmorata	Marbled cat	NT	Sch I
10	Prionodon pardicolor-	Spotted Linsang	-	Sch I

Table 5.46: Mammal Species of Conservation Significance in upper reaches of Dibang Valley


IUCN: EN – Endangered, VU - Vulnerable, NT – Near Threatened; ^E Endemic species

5.2.6 Terrestrial Biodiversity Values of Etalin HEP Study Area

The biodiversity value for mammals, birds, butterfly and vegetation was assessed on the basis of richness of species of conservation significance, threatened (RET) and endemic species. Both Dri and Tangon basin has mostly medium mammal and bird biodiversity values, except for grid 39 in Tangon basin which has high bird biodiversity value due to the presence of highest number of RET species (4 out of 12). With respect to vegetation, the Dri basin had medium biodiversity values while very high and high values were restricted to the Tangon basin, close to the confluence and the proposed dam location. Biodiversity values related to butterflies were mostly high and very high in nature in both Dri and Tangon basins (**Map 5.9 a, b, c, d**).

Map 5.9: Grid-based Terrestrial Biodiversity values within the Study Area – a) Mammal Biodiversity Value, b) Bird Biodiversity Value, c) Vegetation Biodiversity Value & d) Butterfly Biodiversity Value

5.3 Aquatic Biodiversity

5.3.1 Habitat Quality

The channel morphology, meso-habitat composition and water chemistry variables varied along and among Dri and Tangon basins (**Table 5.47**). In general, within the study area, the average width ranged from 5.5 to 66 m, the average depth ranged from 0.12 m to 0.84 m (mostly measured along river banks), and the average flow velocity ranged between 0.50 to 2.63 m/s.

Among water chemistry variables, water temperature varied between 10 -17.6 °C, dissolved oxygen (DO) levels ranged from 7.9 mg/l to 12.3 mg/l, and specific conductance varied from 40.10 (S/m) to 151.2 (S/m). Similar mean water temperatures were recorded within the Dri basin (12.48 \pm 1.81 [standard deviation, SD]) and Tangon basin (12.50 \pm 1.90 SD). For DO as well, mean vales were similar in both Dri (9.48 \pm 1.06 SD) and Tangon basins (9.76 \pm 1.00 SD). On the other hand, higher mean flow velocities were recorded in Tangon basin (1.35 \pm 0.75 SD) than in Dri basin (0.96 \pm 0.48 SD) (**Table 5.47**).

		Dri b	asin			Tangoi	n basin			Ove	erall	
Variables	Mean	Min	Мах	SD	Mean	Min	Мах	SD	Mean	Min	Мах	SD
Width (m)	41.8	4.0	118.0	39.4	28.1	5.5	66.0	20.6	25.2	5.5	66.0	20.6
Depth (m)	0.5	0.2	0.7	0.2	0.5	0.2	0.8	0.2	0.5	0.1	0.8	0.2
WT (°C)	12.5	9.6	17.2	1.8	12.3	10.2	14.3	1.2	12.5	10.1	17.6	1.9
рН	5.6	5.1	7.4	0.6	5.6	4.9	6.4	0.5	5.7	4.9	6.4	0.5
DO (mg/l)	9.5	7.3	11.0	1.1	9.8	8.4	12.3	1.0	9.6	8.0	12.3	1.1
SC (S/m)	53.0	30.0	121.0	25.4	64.6	40.1	100.4	17.7	68.8	40.1	151.2	28.7
EC (S/m)	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0
Flow (m/s)	1.0	0.3	1.8	0.5	1.3	0.5	2.6	0.7	1.4	0.5	2.6	0.8
Riparian cover (%)	20.7	0.0	90.0	35.0	16.9	0.0	90.0	30.2	19.8	0.0	90.0	29.5
Bedrock (%)	27.7	0.0	70.0	17.4	33.0	0.0	70.0	17.3	30.6	0.0	70.0	17.3
Boulders (%)	31.9	0.0	60.0	12.8	34.2	0.0	50.0	13.2	31.7	0.0	50.0	14.1
Cobbles (%)	15.0	0.0	30.0	9.1	12.1	5.0	40.0	10.9	13.1	5.0	40.0	10.5
Pebbles (%)	6.2	0.0	20.0	6.2	3.2	0.0	10.0	4.3	5.4	0.0	20.0	7.1
Gravels (%)	8.1	0.0	20.0	6.6	11.5	5.0	50.0	11.9	13.3	5.0	50.0	12.2
Sand (%)	6.2	0.0	20.0	6.2	5.3	0.0	10.0	3.8	4.6	0.0	10.0	4.0
Leaf litter (%)	5.0	0.0	30.0	8.7	0.8	0.0	5.0	1.9	1.3	0.0	10.0	3.0

Table 5.47: Stream Habitat characteristics and Water Chemistry Variables sampled in Dri,Tangon and Overall basin of Etalin HEP Study Area

WT: Water temperature, DO: Dissolved oxygen, SC: Specific conductivity, EC: Electrical conductivity

5.3.2 Richness and Diversity of Fishes and Benthic Invertebrates

5.3.2.1 Benthic Invertebrate Richness

The micro-invertebrate community play a key role in structuring stream community and immensely contribute to the functioning of the stream ecosystem. One of the major roles of this community is leaf litter processing in the energy flow system. Most of the benthic invertebrate living in stream ecosystem are larval form of many terrestrial insects like Mayfly, Stonefly, Caddis fly, Odonates, Dipterans etc. These larval forms spend nearly few months to two years in the stream ecosystem and provide immense services to aquatic ecosystem. The abundance of macro-invertebrate community in stream

ecosystem, mainly depends on physical and chemical properties, water quality and diversity of substrate composition. Among the micro-invertebrate communities, some group live in clear water with good water quality condition, they are called 'pollution sensitive species.' Similarly, some species thrive well in degraded and nutrient rich environment, they are called 'pollution tolerant' species. Because of their extended residency period in specific habitats and presence or absence of particular benthic species in a particular environment, these can be used as bio-indicators of specific environment and habitat conditions.

Total 17 groups of benthic invertebrates were identified during winter and pre-monsoon sampling. The macro-invertebrate fauna recorded during the survey in the study area are from ten Orders viz. Ephemeroptera, Trichoptera, Diptera, Coleoptera, Plecoptera, Hemiptera, Coleoptera, Dermoptera, Magoloptera, and Odonata (**Plate 5.3**). Among these, during winter season, 15 species of macro-invertebrate were recorded along Tangon river and 13 species along Dri river (**Figure 5.1a**). In both the rivers, Ephimeroptera, Plecoptera and Tricoptera were dominant over the rest of the groups. In the case of pre-monsoon season, 12 and 13 species of macro-invertebrate taxa were recorded in Tangon and Dri respectively (**Figure 5.1b**). Site wise distributions of EPT taxa across 27 sampling location covering winter and pre-monsoon seasons are also presented in **Figures 5.1a & b**. List of macro-invertebrate taxa recorded along the Dri and Tangon regions covering winter and pre-monsoon seasons are presented in **Table 5.48 and 5.49**.

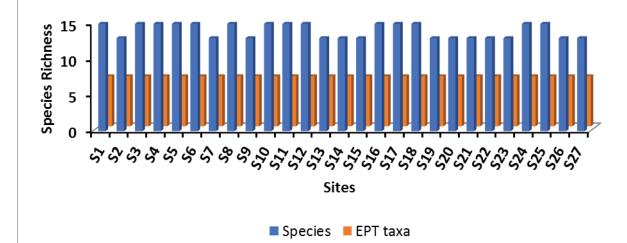


Figure 5.1a: Site wise number of macro-invertebrate species recorded during winter season [S1 – Anon Pani- Tango; S2 – Ayo Pani- Dri; S3 – Tangon-Submergence; S4- Shu pani- Tangon; S5 - achali bastinala – Tangon; S6 - Makri paninala - Tangon; S7 – Dri Main; S8 – Dri & Tangon confluence; S9 - chambo pani – Dri; S10 - Tangon near power house; S11 - Noh nala – Tangon; S12 - Mayo pani – Tangon; S13 - kabo pani – Dri; S14 – Dri submergence 1; S15 - Ru pani – Dri; S16 - Chan nala – Tangon; S17 - Tangon submergence 1; S18 - Tangon submergence 2; S19 - Inu pani – Dri; S20 - Ari pani – Dri; S21 - Dri submergence 2; S22 – Aro Pani – Dri; S23 – Emi pani – Dri; S24 – Tangon project area; S25 - Tangon project area; S26 – Dri end of submergence; 27 – Dri dam axis]

			lable	5.48	lable 5.48: List of Macro-Invertebrate la	ot Mai	Sro-In/	vertet	orate l	axar	ecord	ixa recorded along the Dri and Langon Rivers during Winter Season	ng th	e uri a	ind l	angor	KIVe	s duri	ng v	inter	Seaso	ç				
Family name	S1	S2	S3	S4	S 5	S6	S7	S8	S9	S10	S11	S12 S	S13 S	S14 S′	S15 S	S16 S	S17 S18	8 S19	9 S20		S21 S22	2 S23	S24	S25	S26	S27
Gomphidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hydropsychedae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Tipulidae	+	+	+	+	+	+	+	+	+	+	+	+++	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Aphelocheiridae	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Gyrinidae	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Perlidae	+		+	+	+	+		+		+	+	• +	•	•	+	+	+	•	•	•	•		+	+		
Carcinophoridae										•	•	•	•	'	•	•	•	•	•	•	•	,				
Corydalidae	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lepidostomatidae	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stemopsychidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Nemouridae		+					+	-	+	•	-	+	+	+	'	'	•	+	+	+	+	+	•		+	+
Baetidae	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Heptageniidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Ephemerilidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Simulidae	+		+	+	+	+		+		+	+	+	•	1	+	+	+	•	ı	1	•		+	+		
Elmidae	+	-	+	+	+	+		+		+	+	+	•	•	+	+	+	•	•	•	•		+	+		
Lestidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Species Richness	15	13	15	15	15	15	13	15	13	15	15	15 1	13 1	13 13		15 1:	15 15	13	13	13	3 13	13	15	15	13	13
EPT taxa	7	7	7	7	7	7	7	7	7	. 2	. 2	7 7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
S1 – Anon Pani- Tango; S2 – Ayo Pani- Dri; S3 – Tangon-submergance; S4- Shu pani- Tangon; S5 - achali bastinala – Tangon; S6 - Makri paninala - Tangon; S7 – Dri Main; S8 – Dri	Pani- T	ango;	S2 – A	vo Pan	i- Dri; S3 –	3 – Ta	s-uoɓu	ubmer	gance;	S4-Shu	u pani-	- Tango	n; S5 -	achali	bastin	ala – T	angon;	S6 - M	akri pa	ninala	a - Tang	on; S7 -	- Dri Ma	ain; S8	8 – Dri 24 -	

ng the Dri and Tangon Divers during Winter Season ole hobio Ş -invertehrate Tovo Tahla 5 48. Liet of Macro.

& Tangon confluence; S9 - chambo pani – Dri; S10 - Tangon near power house; S11 - Noh nala – Tangon; S12 - Mayo pani – Tangon; S13 - kabo pani – Dri; S14 – Dri submergence 1; S15 - Ru pani – Dri; S16 - Chan nala – Tangon; S17 - Tangon submergence 1; S18 - Tangon submergence 2; S19 - Inu pani – Dri; S20 - Ari pani – Dri; S21 - Dri submergence 2; S22 – Aro Pani – Dri; S23 – Emi pani – Dri; S24 – Tangon project area; S25 - Tangon project area; S26 – Dri end of submergence; 27 – Dri dam axis

	Tab	Table 5.49: List of Macro-invertebrate	49: L	ist o	f Ma	cro-ii	nver	ebra	te Ta	ıxa re	cord	ed alc	ong t	he Dr	'i and	Tanç	Taxa recorded along the Dri and Tangon Rivers during Pre-monsoon Season	ivers	durin	Ig Pro	-mor	noosu	l Sea	son			
Family name	S1	S2	S3	S4	S5	S6	S7	S8	S9 S	S10 5	S11	S12	S13	S14	S15	S16	S17	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
Gomphidae	I	+	ı		ı		+		+	1		1	+	+	+	ı	ı		+	+	+	+	+	-	ı	+	+
Hydropsychedae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Tipulidae	-		,		ī				-	-				,			ı			-				-		ı	
Aphelocheiridae	ı	+	ı	ı	ı		+		+	-		-	+	+	+	ı			+	+	+	+	+	-		+	+
Gyrinidae	ı	ı	ı	ı	ı				-	'		-		,	1	ı			ı		ı	ı	ı	-	ı	ı	
Perlidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinophoridae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Corydalidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lepidostomatidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stemopsychidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Nemouridae	+	ı	+	+	+	+		+	+	+	+	+		,	ı	+	+	+	ı	-	ı	ı	ı	+	+	ı	
Baetidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Heptageniidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Ephemerilidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Simulidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Elmidae	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lestidae	ı	ı	ı	ı	ı				-	-		-		,	ı	ı			ı		ı	ı	ı	-	ı	ı	
Species Richness	12	13	12	12	12	12	13	12	13	12	12	12	13	13	13	12	12	12	13	13	13	13	13	12	12	13	13
EPT taxa	8	7	8	∞	∞	∞	7	. 00	7 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞	7	7	7	∞	8	ø	7	7	7	7	7	8	8	7	7
S1 - Anon Pani- Tango; S2 - Ayo Pani- Dri; S3 - Tangon-submergance;	ngo; S	32 – A	yo Pa	ini- Dı	ri; S3 – T	- Tan	gon-s	ubmei	gance	э; S4-	Shu pí	ani- Ta	ngon;	S5 - 6	achali t	astina	S4- Shu pani- Tangon; S5 - achali bastinala - Tangon; S6 - Makri paninala - Tangon; S7	angon;	S6 - N	Aakri p	aninal	a - Tar	S :uobu	37 – D	- Dri Main;	S8	– Dri &

Tangon confluence; S9 - chambo pani – Dri; S10 - Tangon near power house; S11 - Noh nala – Tangon; S12 - Mayo pani – Tangon; S13 - kabo pani – Dri; S14 – Dri submergence 1; S15 - Ru pani – Dri; S16 - Chan nala – Tangon; S17 - Tangon submergence 1; S18 - Tangon submergence 2; S19 - Inu pani – Dri; S20 - Ari pani – Dri; S21 - Dri submergence 2; S22 – Aro Pani – Dri; S23 – Emi pani – Dri; S24 – Tangon project area; S26 – Dri end of submergence; 27 – Dri dam axis

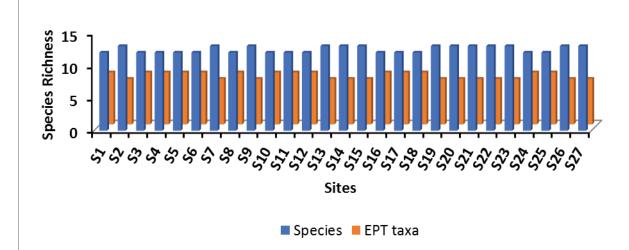
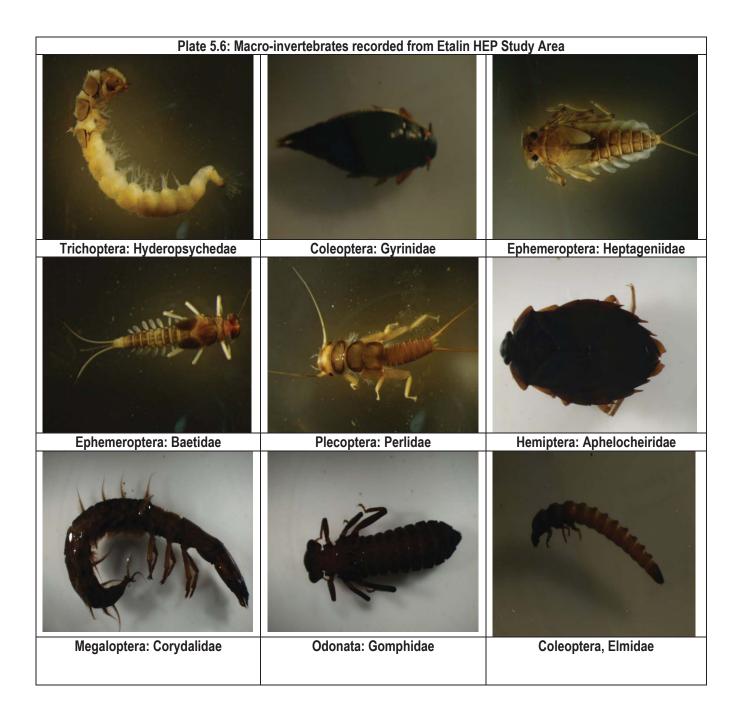
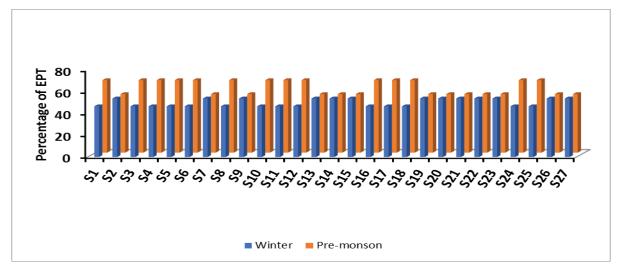




Figure 5.1 b: Site wise number of macro-invertebrate species recorded during pre-monsoon season [S1 – Anon Pani- Tango; S2 – Ayo Pani- Dri; S3 – Tangon-submergance; S4- Shu pani-Tangon; S5 - achali bastinala – Tangon; S6 - Makri paninala - Tangon; S7 – Dri Main; S8 – Dri & Tangon confluence; S9 - chambo pani – Dri; S10 - Tangon near power house; S11 - Noh nala – Tangon; S12 - Mayo pani – Tangon; S13 - kabo pani – Dri; S14 – Dri submergence 1; S15 - Ru pani – Dri; S16 - Chan nala – Tangon; S17 - Tangon submergence 1; S18 - Tangon submergence 2; S19 - Inu pani – Dri; S20 - Ari pani – Dri; S21 - Dri submergence 2; S22 – Aro Pani – Dri; S23 – Emi pani – Dri; S24 – Tangon project area; S25 - Tangon project area; S26 – Dri end of submergence; 27 – Dri dam axis]

Percentage Composition of EPT (Clean Water Species)

Based on the distribution of various groups of benthic invertebrates, percentage composition of the clean water species such as Ephimeroptera, Plecoptera and Tricoptera were estimated for each site. During winter season, the percentage of EPT, varied between 47 and 54, whereas in pre-monsoon season it ranges from 54 to 67 percentages (**Figure 5.2**). Generally, the percentage composition of EPT being more than 60% than the rest of the group, indicate clean water condition, which is more ideal for colonization of pollution sensitive species (EAP, 1997). The reduction in percentage composition of EPT when compared to rest of the groups, indicates the streams are under varying level of degradation. The important factors reducing the quality of stream water are: siltation due to dumping debris and construction materials in to river channel, surface run off from agricultural/ horticultural field, discharging household drainage and other man-made activities in the upstream area. Further, the assemblage structure of macro-invertebrate community recorded in the study area may change due to pre and post dam construction activities along the Dri and Tanglon river.

Figure 5.2. Percentage composition of EPT taxa recorded in winter and pre-monsoon season in Dri and Tangon rivers [S1 – Anon Pani- Tango; S2 – Ayo Pani- Dri; S3 – Tangon-submergance; S4-Shu pani- Tangon; S5 - achali bastinala – Tangon; S6 - Makri paninala - Tangon; S7 – Dri Main; S8 – Dri & Tangon confluence; S9 - chambo pani – Dri; S10 - Tangon near power house; S11 - Noh nala – Tangon; S12 - Mayo pani – Tangon; S13 - kabo pani – Dri; S14 – Dri submergence 1; S15 - Ru pani – Dri; S16 - Chan nala – Tangon; S17 - Tangon submergence 1; S18 - Tangon submergence 2; S19 - Inu pani – Dri; S20 - Ari pani – Dri; S21 - Dri submergence 2; S22 – Aro Pani – Dri; S23 – Emi pani – Dri; S24 – Tangon project area; S25 - Tangon project area; S26 – Dri end of submergence; 27 – Dri dam axis]

5.3.2.2 Fish Richness

Overall, 12 different species of fishes (belonging to two orders and four families) were recorded within the study area over the sampling period. Overall, *Schizothorax progastus* was the most dominant species (34.3%), followed by *S. richardsonii* (30. 6%), *Aborichthys* sp (9.3 %,), *Garra magnidiscus* (8.8%), *Tor* sp (5 %) (**Table 5.50 & Figure 5.3a**). Of the two orders, the most dominant was Cypriniformes with eight species (94%) as compared to four species (6%) in Siluriformes. As for families, Cyprinidae (carps, minnows) was the most dominant (five species), followed by Sisoridae (four species), Nemacheilidae (two species) and Psilorhynchidae (one species) (**Table 5.50 & Figure 5.3b**).

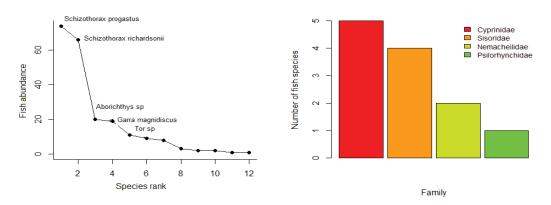


Figure 5.3: a). Overall species rank abundance plot shows, *Schizothorax progastus* was most dominant species followed by *S. richardsonii*, *Aborichthys* sp, *Garra magnidiscus* and *Tor* sp. b) Family wise richness was well represented by Cyprinidae followed by Sisoridae

In Dri sub-basin, five most dominant species were *Schizothorax progastus* followed by *S. richardsonii, Exostoma labiatum, Garra kempi* and *G. magnidiscus* while, in Tangon basin, *S. richardsonii* dominated than *S. progastus, Aborichthys* sp, *Garra magnidiscus* and *Tor* sp (**Figures 5.4 a & b**). This suggest that, the fish community belong to cold-water and headwater specialist category. These fishes complete their life-cycle within available narrow thermal tolerance and flow range (Sehgal 1999).

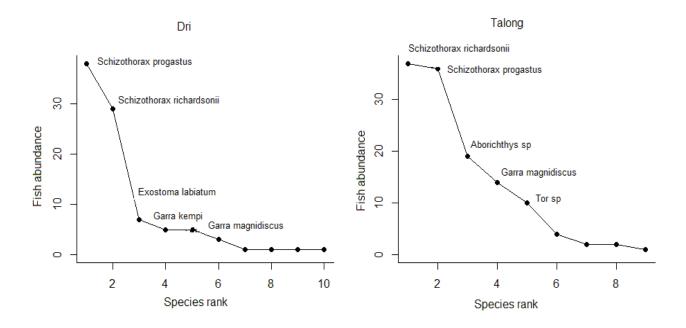


Figure 5.4: Rank abundance plot showing five dominant species in a) Dri and b) Tangon subbasin

Table 5.50: Detailed information on fish species recorded within the study area (Dri basin, Tangon basin and below the confluence), their IUCN status and endemism (with reference to North-Eastern biodiversity hotspot in India.

Outle of Englished	Dri basin (count)		Tangon basin (count)		A la		F actoria
Order/Family	Upstream	Down	Upstream	Down	Abundance	IUCN	Endemic
Cypriniformes/Cyprinida	е						
Garra kempi	5	0	0	4	9	LC	Ν
Garra magnidiscus	5	0	0	14	19	NE	Y
Schizothorax progastus	34	4	12	24	74	LC	Ν
Schizothorax richardsonii	29	0	4	33	66	VU	Ν
Tor sp	1	0	0	10	11	-	Ν
Cypriniformes/Nemache	ilidae						
Aborichthys sp*	0	1	0	19	20	-	Y
Schistura sp*	0	0	0	2	2	-	Y
Cypriniformes/Psilorhyn	chidae						

Order/Femily	Dri basin (count)		Tangon bas	Tangon basin (count)		IUCN	Endemic
Order/Family	Upstream	Down	Upstream	Down	Abundance	IUCN	Endemic
Psilorhychus arunachalensis	0	0	0	2	2	DD	Y
Siluriformes/Sisoridae							
Creteuchiloglanis arunachalensis	0	1	0	0	1	LC	Y
Exostoma labiatum	0	7	0	1	8	LC	Y
Parachiloglanis bhutanensis	3	0	0	0	3	NE	Ν
Pseudecheneis sulcata	1	0	0	0	1	LC	Y

Overall, the fish richness was accumulated over 35 segments (**Figure 5.5a**). However, for each basin, the species accumulation steadily flattened and suggesting availability of few more cryptic species in the study area, that remain uncaptured during the study period (**Figure 5.5b**).

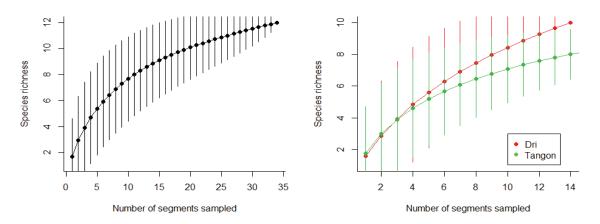
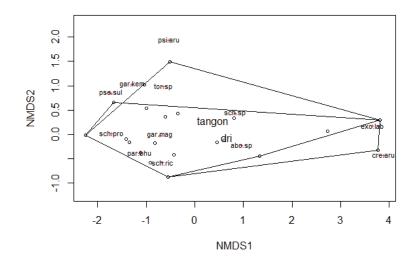
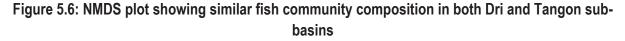




Figure 5.5 a: Species accumulation for Dri & Tangon basins combined b) Species accumulation for Dri and Tangon basins separately

a) Fish composition

Non-metric multi-dimensional scaling (NMDS) results show that Dri and Tangon basins have similar fish community composition (**Figure 5.6**), differing by only two species. *Creteuchiloglanis arunachalensis* and *Parachiloglanis bhutanensis* were recorded only in the Dri basin, while *Psilorhychus arunachalensis* and *Schistura* sp were recorded only in the Tangon basin. Seven species namely, *Garra kempi*, *G. magnidiscus*, *Schizothorax progastus*, *S. richardsonii*, *Exostoma labiatum*, *Aboricthys* sp and *Tor* sp. were common in both the basins.

b) Species diversity and habitat characteristics

Among the major river habitats sampled, pool habitat showed highest species richness followed by riffle, run and cascade habitats. Maximum number of species were captured during the pre-monsoon season and the least during the winter season (**Figures 5.7 a. & b**).

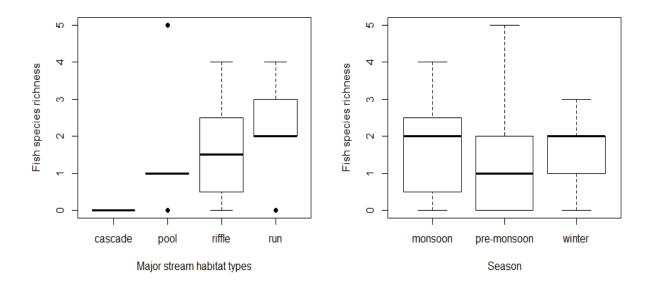


Figure 5.7: a). Fish species richness across different habitat types shows, pool was most species rich than riffle, run and cascade in the study area b). Fish richness show highest during pre-monsoon (mid-Feb to mid-March) than monsoon (mid-May to June) and winter (Jan-mid Feb).

Fish species richness and abundance declined with the increasing distance from the proposed dam site in Dri basin (Figure 5.8 a & b), while it was highest mid-way from the proposed dam in the Tangon basin (Figure 5.9 a & b).

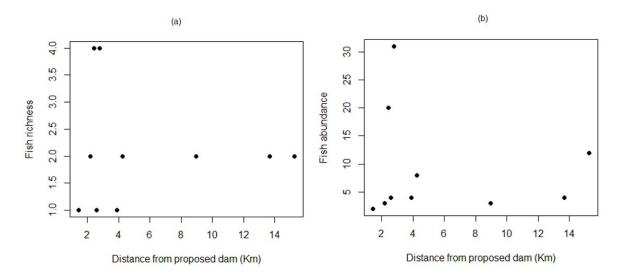
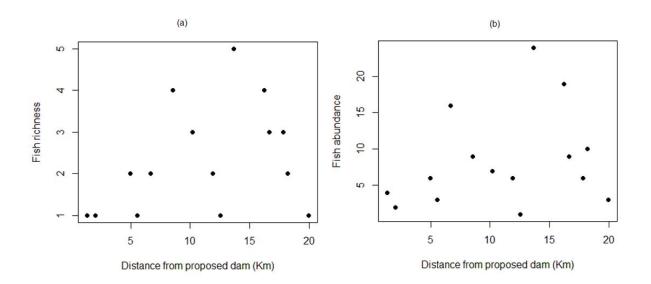
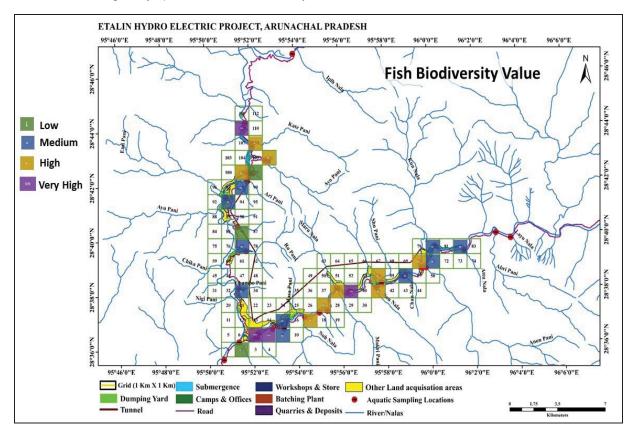



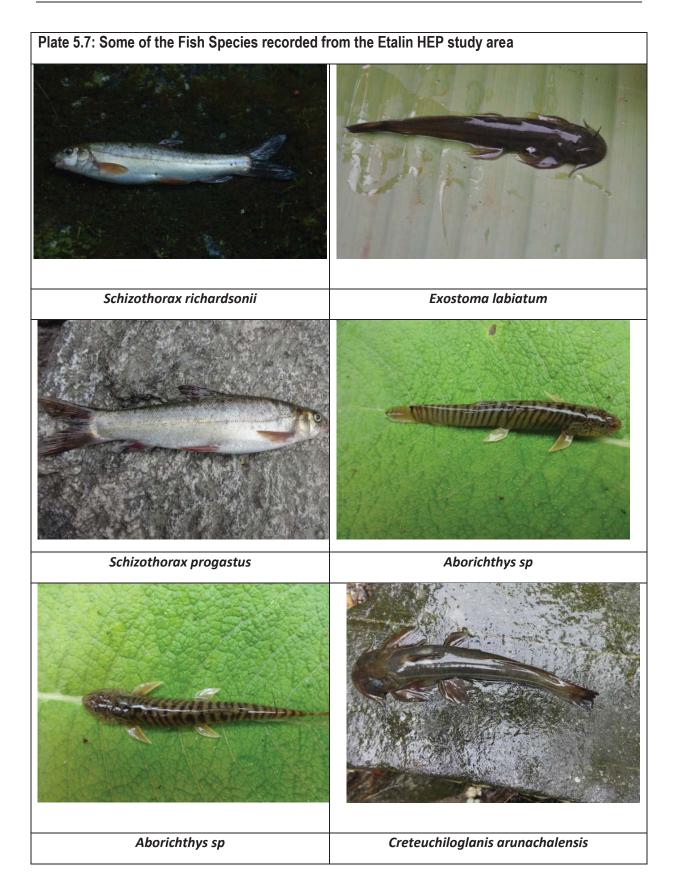
Figure 5.8: a) Fish richness and b) abundance declined with the increasing distance from the proposed dam in Dri sub-basin

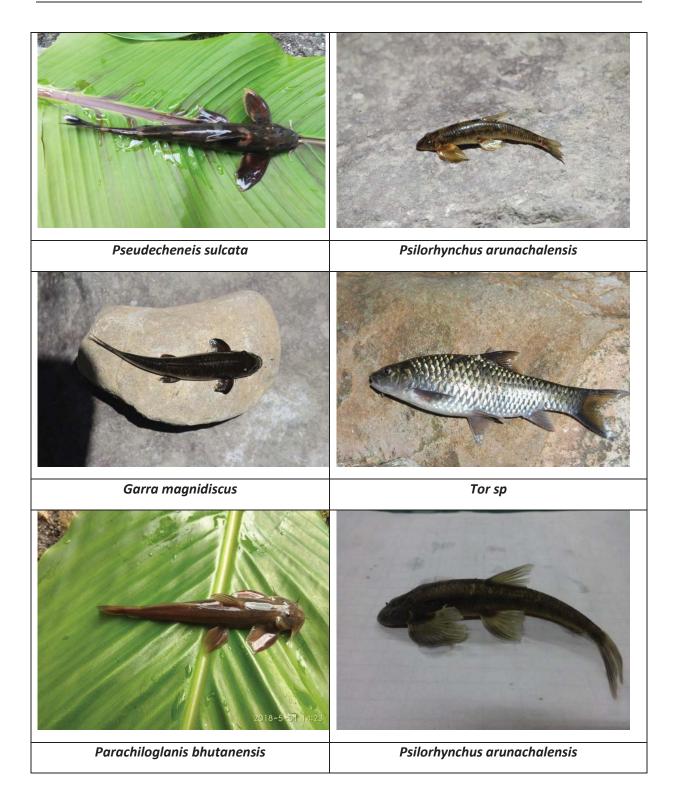
Figure 5.9: a) Fish richness and b) abundance was higher in the middle river segments in Tangon sub-basin

c) Species of conservation significance


Out of the 12 fish species recorded during the study, 30.6% are Vulnerable, while the rest are either Least Concern (43.1%), Not Evaluated (10.2%), Data Deficient (6%) or the status is not available (15.3%). In terms of endemism, most of the species are not endemic (79.6%), while 20.4% are endemic

species. Of the total, 56.7% were captured below the proposed dam site, while 43.5% were captured upstream.


Although certain species might not have global significance with reference to their threatened status by not being of conservation significance (RET/endemic), but they might have high regional importance. For example, *Schizothorax* and *Tor* sp migrate within free-flowing stretches of Himalayan rivers, but the amount of distance covered by them is still unknown. In the present study, three species exhibited long-distance migration (within river) while, nine were short distance migrants, either restricted to special habitats such as headwater or undammed/undisturbed tributaries (**Annexure 5.11**).


5.3.2.3 Aquatic biodiversity values in EHEP

The aquatic biodiversity value was assessed on the basis of species richness, richness of RET species, migratory species, endemic species and the presence of breeding/congregation sites (**Map 5.10**). Along the Dri river, grids with very high and high biodiversity values (15% of total number of sampled grids) were restricted to the upstream sections, close to the proposed dam and submergence area. As compared to the Dri river, Tangon river has a greater number of grids with very high and high biodiversity values (34% of total no. of sampled grids), which are present throughout the river, downstream of the proposed dam location. In all these grids with very high and high biodiversity values, the RET fish species *Schizothorax richardsonii* was present and most of these grids had fish breeding sites and >60% of migratory species found in the study area.

Map 5.10: Grid-based Aquatic Biodiversity values within the Study Area

5.4 Socio-culture Status and Biodiversity Conservation

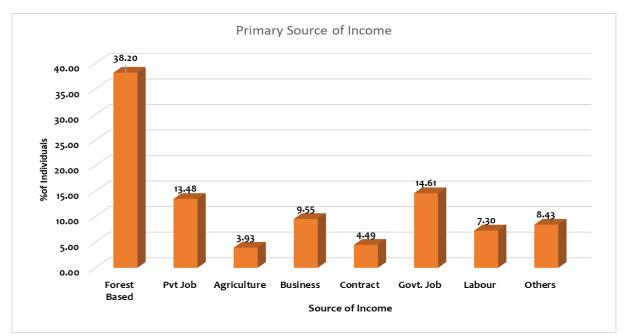
5.4.1 Household and demographic profile of the Project Affected Villages (PAV)

Demographically, the total population of Dibang valley district is 8004 people (National Census, Govt. of India, 2011), of which 4414 are males and 3590 are females. About 70 % of the District's population is rural and rest 30 % is urban, restricted mainly to Anini, the district headquarters. Idu Mishmi is the lone tribe inhabiting the Dibang Valley district (**Table 5.51**).

For this study, 179 households in 22 villages out of the 294 PAFs identified for Social Impact Assessment and R & R Plan of EHEP Project, January, 2015 were surveyed. Kaduli and Matuli villages were surveyed as residents of Ayeso and Apayee villages, who have settled there for approximately last 20 to 30 years respectively. Imuli village was also surveyed on Dri side as residents of Ayeso village, who were also settled there (**Annexure 5.12 a & b**). About 20 villages, 178 families and 839 people are likely to be affected due to the proposed hydropower project. Total 23 villages were surveyed under this study. The number of persons interviewed were almost equally distributed between male (48 %) and female (52%) (**Table 5.51**).

S.No.	Circle / Village	No. of PAFs	No. of PAPs	Male	Female
Anini	Circle/Dri basin				
1	Punli	17	88	38	50
2	Ayeso	1	1	1	0
3	Akobe	8	47	24	23
4	Yuron	3	6	2	4
5	Apayee	0	0	0	0
6	Aguli	5	24	12	11
7	Matuli	8	32	17	15
8	Kaduli	8	37	22	15
9	Imuli	2	11	6	5
Etalin	Circle / Tangon basin				
1	Etalin HQ	34	157	73	84
2	Etalin Bridge Point	34	179	81	98
3	New Aropo	12	57	28	29
4	Emuli	0	0	0	0
5	Punli	3	15	9	6
6	Aruli	12	33	19	14
7	Athunli	11	63	32	31
8	Edili	1	1	1	0
9	Aunli	6	25	8	17
10	Apunli	0	0	0	0
11	Aliwu	1	1	1	0
12	Atyi	4	28	13	15
13	Azuli	2	8	3	5
14	Amuchi	4	14	6	8
15	Maayi	3	12	7	5
Total		179	839	403	436

Table 5.51. Demogra	ohic Profile of the	Villages Surveye	ed within Etalin	HEP Study Area


PAF- Project Affected Families, PAP- Project Affected People; Source: Field Survey

5.4.2 Nature-based livelihood

Forest-based income: The Idu Mishmi community is largely dependent on the forest-based plant and animal resources for their livelihood and daily needs, such as collecting wild edible plant resources and wood for infrastructure development (**Figure.5.10**). The major source of dietary proteins is meat via traditional hunting. Livelihood is essentially nature-based – jhum agriculture, cane collection and collection of bamboo and other wood materials for the construction of household structures. Food gathering is a supplementary source of livelihood for the people. Non-Timber Forest Produce (NTFP) such as vegetables, fruits, barks, seeds, edible plants and leaves, are mainly derived from the forest. Some of the forest products (e.g., bamboo, broom grass, fodder species etc.) are collected throughout the year, while some are collected within specific time periods such as six months (e.g., Cane, bamboo shoot, *Paris polyphylla*, edible mushrooms etc.). Edible items from the forest are collected to fulfil food requirements. Collection of leafy vegetables, mushrooms, fruits and other edible items and fodder for livestock mainly pigs are primarily done by the women of the community.

About 38.2% of PAFs are dependent on forests and their resources, as being their primary source of income, which basically comprises of carpets, handicrafts made from bamboo, cane collection, timber, medicinal plant collection, and *Paris pollyphylla* collection.

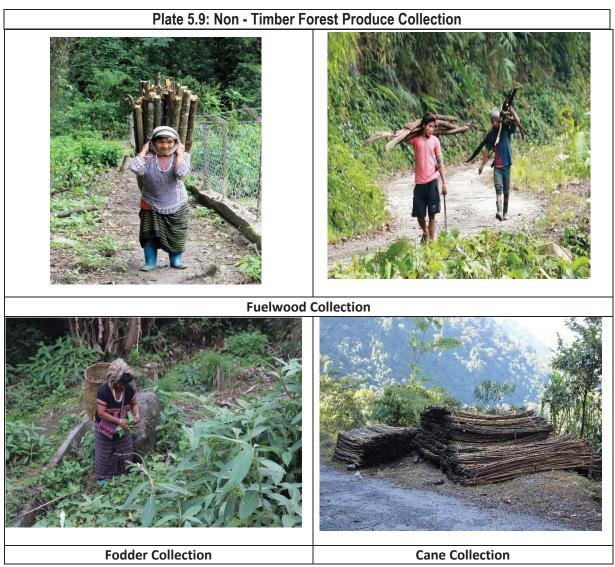
Agriculture: Though, only 4% of the people are dependent on agriculture for their livelihood income, *jhum* agriculture or shifting cultivation is known for causing loss of forest cover and associated biodiversity values. Agriculture crops within the study area mainly include rice (keh), millet (yamba), buckwheat (eke), maize (ambo) along with a variety of vegetables such as pumpkin, chillies. With cardamom and orange as two major cash crops.

Figure 5.10: Primary sources of income of the project study villages

Cumulatively, direct forest-based income, agriculture and other nature-based incomes (8.43% handicraft, shamanism, and traditional handloom) contribute to 50% of the local livelihood, directly or indirectly (**Plate 5.8**).

Different livelihood activities are either annual or seasonal (**Table 5.52**). Agricultural activities last for nearly one full year, leaving one-month gap in three phases (Jhum, burning, sowing and harvesting). Hunting takes place for six months in two phases (January-March and July – September). Collection of wild edible mushrooms, bamboo shoot and *Paris Polyphylla* are seasonal.

Activities	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
Laying Traps												
Takin Hunting												
Musk Deer Hunting												
Fishing												
Clearing Jhum												
Burning												
Sowing												
Harvesting												
Paris Polyphylla												
extraction												
Cane Collection												
Wild Edible												
Mushrooms												
Bamboo Shoot												
Collection												

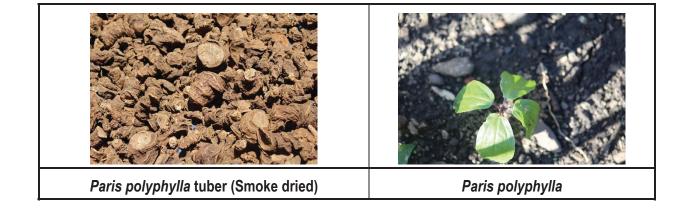

Table 5.52: Calendar of activities that people engaged in a year

5.4.3 Socio-cultural Importance of Natural Resources

5.4.3.1 Importance of Plant Resources

As discussed earlier, *Idu Mishmis* are traditional food gatherers, who collect wild edible plants, livestock fodder and medicinal plants from the forest and its fringe areas near the roadside (**Tables 5.53**, **5.54**, **5.55**).

The *ldus* are skilful in making different kinds of mats, caps, baskets, utensils with bamboo and cane for domestic and commercial use (**Table 5.53 & Figure 5.11**). The climatic condition and edaphic conditions of the study area facilitate luxuriant growth of different species of bamboo, cane and reed, which provide raw materials for the house construction as well as other essential articles of daily use e.g., baskets, mats, etc. Apart from bamboo, cane and reed, houses are also made with thatch / hay, palm leaves, and wood. Wood is used in the form of posts for which tall, straight trees are cut and debarked. The floor of the house is made of split bamboos (*Awruto, Abrato*), which is raised from the ground on wooden posts, three to five feet in length. The roof is of either thatched dry *ako* (*Livistona jenkinsiana*) or tin sheets. A fire place (*aengokho*) situated at the centre of every room serves for cooking and when cold the occupants sleep close to it. Over the fire hearth hangs a square-shaped bamboo shelf used to dry meat and fish.



About 86.3 % of PAFs collect NTFPs, such as bamboo, cane, bamboo shoot, wild edible plants, fodder, fuel wood, broom grass, and grass for thatched roof, to meet their daily requirements. About 35.7 % PAFs collect timber, mainly for constructing houses (**Plate 5.5**).

Extraction of Paris polyphylla. Intensive collection of *Paris polyphylla* is a very recent trend among the local villagers. This wild tuber or rhizome is collected annually in enormous quantities as a quick and a good source of income. Though this natural resource is very rewarding the locals are unaware of its utilization and medicinal properties; some even felt that this rhizome is prone to overexploitation. They emphasized that regularisation of its extraction e.g., collecting it once in two years, was essential for its sustainable use (see **Box 5.1**).

Box 5.1. Extraction of Paris polyphylla. "A quick and a rewarding income source"

Paris polyphylla is a rhizomatous herb, which is extracted from the upper reaches of alpine meadows. Small groups of 5-10 villagers in few villages, mainly youths are involved in collection of Paris polyphylla annually from the forest areas of higher altitude. Sometimes, they have to travel till the international border (China) in search of this costly resource taking high risks. Generally, Paris polyphylla collection is planned for 20-30 days and they get into the remote forest areas to collect this rare plant produce. They have to take hardship and spend many days in very harsh climate with limited food (one meal / day) to collect the rhizome and process it (smoke dry) in the forest itself and bring back to sell it to the middleman either in Etalin or Roing. Since this rhizome fetches Rs 7000 to 8000/per Kg, it is a good and quick income sources for the local villagers. This activity is supplemented with aid from state and federal agencies and occasional small-scale contractual work with the local government. Collection of Paris polyphylla is a recent development in Dibang Valley and in the last 5 - 6 years they involve in intensive collection between March to July and become one of the main activities. It appears now in their calendar activities from march to July. Due to rampant and reckless extraction of the species, it is facing tremendous pressure due to high market demand. Interaction with the youths revealed that, they understand that, Paris polyphylla collection is increasing annually and over exploitation is likely to reduce the productive potential of this rare plant resources and seeking way for sustainable use. Although it is an off-farm income resource or livelihood of the local community, they are not aware of its important medicinal properties, for which it is collected. Local people reported that although the rhizome of the species has high market value, they are not aware about the importance and use of the species.

S.No.	ldu (local) name	Scientific name	Part Used	Remark
1.	Alombo	Phoenix sylvestris	Pith	used as fodder
2.	Kuchu	Colocasia	Tuber	Edible
3.	Elokana	Dioscorea dumentorum	Tuber	Edible
4.	Etona	Fagopyrum sp	Leaf	Fodder & Edible
5.	Ahona	Piper sp	Leaf	Edible
6.	Athumbo	Begonia sp	Stem	Edible
7.	Amuli	Houttuynia cordata	Leaf	Edible
8.	Awrukana	Elatostemma	Leaf	Edible
9.	Alikona	Piper sp	Leaf	Edible
10.	Pra-ahkuna	Chassalia	Leaf	Fodder
11.	Ayaona	Streptolirion	Leaf	Edible
12.	Ambrachu	Bamboo sp	Shoot	Edible
13.	Maneimbo	Colocasia	Leaf	Fodder
14.	Setaka	Solanum	Fruit	Edible
15.	Lychee	Nephelium	Fruit	Edible
16.	Andhichu / Anjimbo	Diplazium esculentum	Leaf	Edible
17.	Aruna	Carex sp	Leaf	Fodder
18.	Aitina	Impatiens sp	Leaf	Fodder
19.	Ayitimbo	Alpina sp	Fruit	Edible
20.	Alopenga	Mesa sp	Fruit	Edible
21.	Tipurna	Clerodendrum colebrookianum	Leaf	Edible
22.	Bishi	Ficus semicordata	Fruit	Edible
23.	Enushi	Rubus sp	Fruit	Edible
24.	Myshana	Spillanthes	Leaf	Edible

Table 5.53: List of Edible and Fodder plant collected from Forest

S.No.	ldu (local) Name	Scientific Name	Part Used	Remark
1.	Tipurna	Clerodendrum colebrookianum	Leaf	High Pressure
2.	Aro	Coptis teeta	Root	Stomach-ache, Dysentry
3.	Wild Setaka	Solanum myricanthum	Fruit	Toothache
4.	Areba	Ageratum conyzoides	Leaf	Wound & Cut
5.	Athumbro	Begonia josephii	Leaf	Bone pain and selling, Cough
6.	Bithi	Ficus semicordata	Aerial root	Wound & Cuts
7.	Achamari	Pouzolzia	Leaf	Leech bite
8.	Arasapana	Plantago sp	Leaf	Wound
9.	llumuna	Artemisia sp	Leaf	Wound, nose bleed

Table 5.54: List of Medicinal Plants collected from Forest

Table 5.55: Details on Major Natural Resources dependency of Villagers of the Etalin HEP Study

			Area			
S No	Na Circle (Willows					
5.NO.	Circle / Village	PAFs	NTFP collection	Fishing	Timber	Hunting
Anini	Circle/Dri basin					
1	Punli	17	16	3	7	9
2	Ayeso	1	1	0	0	0
3	Akobe	8	8	4	4	5
4	Yuron	3	1	1	0	0
5	Apayee	0	0	0	0	0
6	Aguli	5	5	2	5	4
7	Matuli	8	7	4	3	4
8	Kaduli	8	8	3	2	3
9	Imuli	2	2	2	2	2
Etalin	Circle/Tangon basin					
1	Etalin HQ	34	20	7	9	6
2	Etalin Bridge Point	34	31	19	11	11
3	New Aropo	12	12	1	6	5
4	Emuli	0	0	0	0	0
5	Punli	3	3	2	2	2
6	Aruli	12	9	7	3	6
7	Athunli	11	11	6	4	6
8	Edili	1	1	0	0	0
9	Aunli	6	6	1	1	1

S No.	Cirolo / Villogo		Number o	of Families		
3.NO .	Circle / Village	PAFs	NTFP collection	Fishing	Timber	Hunting
10	Apunli	0	0	0	0	0
11	Aliwu	1	1	0	0	0
12	Atyi	4	4	2	3	2
13	Azuli	2	2	0	1	1
14	Amuchi	4	3	4	1	3
15	Maayi	3	3	0	0	0
	Total	179	154	68	64	70

PAF - Project Affect Family; NTFP - Non-Timber Forest Produce; Source: Field Survey

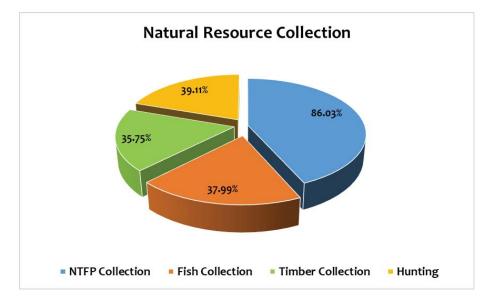


Figure 5.11: Natural Resource Collection

5.4.3.2 Importance of Animal Resources


Wild meat is the major source of protein for the locals and 39% of the local population is engaged in hunting. While hunting is done mainly for meat consumption, occasionally the meat is sold for commercial purposes, particularly that of musk deer (*Ala*). In addition to hunting, 39% of the people are dependent on fishing for supplementing their protein requirements. Natural resources also play vital role in fishing activities of the people e.g., a variety of fishing trap called *tha* is made of bamboo.

Hunting

i. Animals

Although hunting is an integral part of the community's tradition, it is in general, one of the major threats to wildlife in Arunachal Pradesh. Animals are primarily hunted for meat, but at the same time there is a local demand for skin, teeth, feather, beaks and other animal parts, for making traditional dresses and medicines. Wildlife is also hunted as a result of livestock/human-wildlife conflict (**Annexure 5.13**). During the survey, several indirect animal evidences as a result of hunting were found in local houses such as skin, horns, antlers, hairs and skulls of different animal species (**Plate 5.6**). This

information along with data generated from local interviews was used to supplement the fauna checklist (mammals and birds) of the study (Figure 5.12). A total of 30 mammals were reported by ethnic hunters. According to the hunters, barking deer and wild boar were the most frequently hunted species followed by goral, takin, Asiatic black bear, serow, and musk deer. Both guns and locally made traps are commonly used for hunting. Hunting is mainly carried out in winter season (Table 5.52) but musk deer is targeted mainly during August to September. People prefer wild meat but tend to consume domestic meat more often.

Display of Takin skull

Display of Wild pig Jaw

Figure 5.12 – Distance travelled by hunters for hunting wild animals

ii. Birds

Apart from hunting birds for flesh, bird has special aesthetic and cultural importance in the *Idu Mishmi* community. The species of this taxa are also hunted for beaks for wall decoration, to test/train hunting skills as well as for recreation/sport. Flesh of species such as wild fowls, hornbills, pheasants, bulbul, pigeon, myna, dove are widely consumed. Species like vulture, crow and owl are restricted for consumption. Interviews with locals revealed that they hunt approximately 42 species of birds (**Annexure 5.14**), including three species listed as threatened species (IUCN Red List) and six species are Schedule I species.

iii. Hunting of RET species

Although hunting is a traditional right of *Idu Mishmis*, hunting of bird and mammal species of conservation significance i.e. RET and endemic species, is a matter of concern (**Annexure 5.13 & 5.14**). Among the 30 species of mammals, few mammal species, such as Wild Dog, Yellow-throated Marten, Wild Pig, Leopard Cat, Macaque are hunted due to conflict issues such as cattle and poultry lifting and crop riding. Other protected species such as Asiatic Himalayan Black Bear and Alpine Musk Deer are hunted for commercial purposes. Though the *Idu Mishmi* community does not hunt the tiger as it is considered as next to human kin, preference for higher altitudes by this species also reduces their hunting threat. It is essential that the awareness regarding protection and conservation of RET species is made among local people.

iv. Transboundary Hunting

Transboundary hunting is another major threat. According to the local hunters, Chinese hunters regularly come into the Indian territory in groups of four equipped with sophisticated hunting weapons and hunt.

v. Customary Restriction

Idu Mishmi observe customary restriction (*Aena*) for five days when they hunt. *Aena* can function as effective conservation tactic. Large animal killings, demand various personal sacrifices and restrictions, usually for at least five days. The hunter has to observe celibacy for five days, where one cannot bath, eat garlic/ginger/mushroom/salt, or wash clothes. Even if one eats any wild meat (from jungle), during Aena, there is a penance. *Aena* is particularly strict with respect to tigers, the apex predator in the region. Tigers can only be killed in self-defence, or if it is a man-eater. If a tiger is killed otherwise, the entire village has to observe *Aena*, making tiger protection a collective responsibility. *Aena* ensures that the *Idu Mishmi* continue to respect the ecosystem they inhabit.

5.4.3.3 Religious importance of Natural Resources

Nature and forests play an important role in the religious practices of the *Idu Mishmi* people. *Idu Mishmi* follow animism i.e., attribution of living soul to plants, inanimate objects and natural phenomenon. Spirits or *khinyu* are said to be abound in jungles, hills, shadowy recesses, rivers, gorges, cliffs and are feared by the *Idus* (Bhattacharjee,1983). Their supreme God *Inni*, embodies the highest ethical conception (Baruah, T.K., 1960). Traditionally, an *Igu* (Shaman) is a key figure of religious beliefs and practices in the *Idu* society (Chaudhary, S.K., 2008), who utilizes many natural resources to carry out his rituals (**Table 5.56**).

Local Name	Scientific Name	Use
Abrato	Bambusa pallida	Used as <i>Tothro</i> during funeral ceremony (<i>Yaa</i>) to ward off evil spirit and protect <i>Igu</i> and family members of the departed Considered as a sign of fertility; newlywed bride carries it to husband's house Used in traditional handloom
Kalita	Wild Turmeric	Used as medicine by Igu
Eluna	Caryota sp.	Ayuta (leaf broom) used by Igu during funeral ceremony
Aekambo		Aekana (leaves) is used before going to jungle for hunting; ritual is called Abuthu
Aepho	Saccharum sp.	Used during childbirth and is kept permanently at home
Amralaa	Panthera tigris	Tiger teeth belt Adorned by Igu – reflects the braveness and strength and gets spiritual power from it
Ahulaa	Ursus thibetanus	Bear teeth belt Adorned by Igu – reflects the braveness and strength and gets spiritual power from it
Ripooh		Small drum whose body part is made with root of Mangtoh (bamboo sp), Skin part is made from skin of Monitor Lizard (Akupra), skin of goral (Amikopra)
Ahona	Piper sp.	Very important in all ceremonies viz. wedding, birth, funeral

Table 5.56: Types of natural resources used for religious and cultural belief

5.4.3.4 People's Perception on Etalin HEP Project

The social survey also included component/ aspects related for understanding the people's perception on the proposed EHEP project. Interaction with the locals showed that, as per people's perception 69.3 % of PAFs are in favour of the Proposed EHEP Project. They discussed many reasons for the support of the project, which mainly includes, making use of the potential of hydropower, better education, health, infrastructure facilities, job and enhancement of life quality (**Table 5.57**). Only 5 % of the PAFs were not favourable for the proposed project due to various reasons and the main reasons being loss of land and threat to their culture due to influx of outsiders. The remaining of slightly more than 20% of PAFs were neutral for the project i.e. neither in favour nor against the project (**Figure 5.13**).

An Environmental Public Hearing in respect of Etalin Hydro Electric Project (3097 MW) executed by M/s Etalin Hydro Electric Power Company Limited was conducted on 12.12.2014 from 10.00 AM onwards at Etalin HQ, Dibang Valley District, Arunachal Pradesh. The entire Public Hearing proceeding was presided over by Shri Tamune Miso, Deputy Commissioner, Anini, Dibang Valley District - cum - Chairman of the Public Hearing. In all 545 (five hundred fourty five) people attended the Public Hearing. The range of issues raised by PAFs/ public have been clarified by the developers in detail.

	Positive Perception a	and Ex	pected Benefits				
S.N.	·	S.N.					
1	Arunachal Pradesh has high potential of hydropower generation so Government should harness it for generation of electricity	7	Development of sports complex for encouraging youth in sports				
2	Unremitting electrical supply at a subsidised rate	8	Generation of job opportunities in the project				
3	Auxiliary business opportunities for locals	9	Living standard of locals will improve – life quality				
4	Ancillary infrastructure development	10	Development of modern civic amenities				
5	Economic up-liftment of local people	11	Growth in tourism, will serve as auxiliary source of income				
6	Education and infrastructural development	12	Development of medical facilities				
	Negative Perception a	and Ex	pected Conflicts				
1	Cultural Conflict in the form of intercultural mixing due to influx of outsiders	4	Women safety				
2	Loss of grazing land for the Mithun and thereby loss of a traditional practice	5	Resettlement and loss of community land				
3	Threat to culture and Idu dialect	6	Illegal settlement of outside labours				
		7	Destruction of Natural Resources and largescale depletion of resources				

Table 5.57: People's Positive and Negative Perception on the proposed Etalin HEP Project

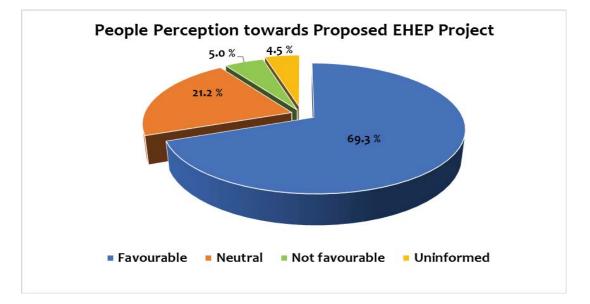


Figure 5.13: People Perception towards proposed Etalin HEP Project

CHAPTER 6: Assessment of Impacts of hydropower on key biodiversity areas & values

6.1. INTRODUCTION

All the development programs like infrastructure, urbanization, energy, mining, water, policies and other development projects can cause significant changes in many features of the physical, biological and social attributes of the project environment. In some cases, the changes may be beneficial while in other it may be detrimental. However, the occurrence and magnitude of these changes or impacts entirely depend on the type and nature of project, project location, and the technology involved in implementation (construction and operation) and management. Hence, environmental impacts studies must systematically identify qualify and appropriately interpret the significance of these anticipated changes or impacts.

The major environmental problems associated with the development programs are: deforestation, soil erosion, disturbance to hydrological regime, pollution (water, air and noise), and reduction of floral and faunal diversity, health and resource use (ED-World Bank 1998). These impacts ultimately lead to degradation of land which affects the overall biomass productivity and quality of human life in the vicinity of project areas. Development projects in any given region must learn to respect the ecological integrity and biodiversity values of the region as these are going to be the determinants of environment quality as well as the sustainability of the development interventions. With determination and effort these unwanted consequences of development can be reduced substantially, as we progressively hone our technical and managerial skills for preventing and/or mitigating them. This clearly vouches for a well-planned Environmental Impact Assessment.

Therefore, it has been emphasized that, thorough understanding of biological attributes covering species diversity, community structure and site-specific soil-plant-animal relationships of a given geographical region, not only aid for assessing the impacts, but in help in mitigating the changes and restoration plans (Wali and Freeman 1973., Fisser and Ries 1975 and Soni *et al* 1992).

6.2. IDENTIFICATION OF POTENTIAL SIGNIFICANCE OF TERRESTRIAL BIODIVERSITY – SPATIAL SCALE

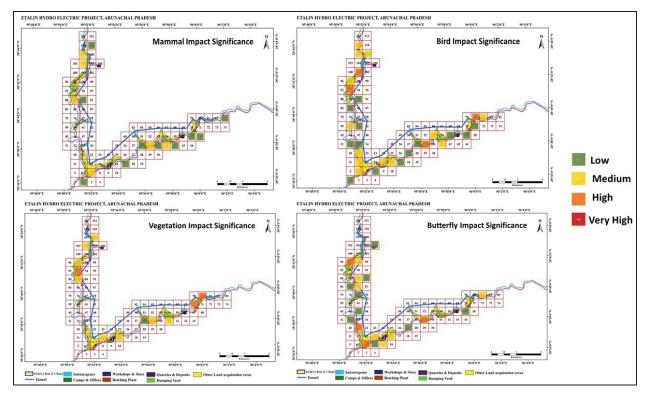

The impact identification and evaluation were done at two levels based on the biodiversity values of terrestrial habitat:

- Impact potential of the EHEP Spatial Scale
- Significance of the impacts of EHEP Spatial Scale

The above two applications show the impact potential and significance of impact of EHEP at spatial scale within the project area along the two river basins and the outcomes of which are discussed below

6.2.1. Impact Potential of the EHEP with respect to Terrestrial Biodiversity –Spatial Scale

The impact potential of the EHEP within the zone of impact - Zol (**Map 6.1**) using the criteria defined previously, as expected showed that grids containing the proposed dam, involving the largest areas of acquired land (equivalent to habitat loss), have very high to medium impact potential values. The downstream of the Dri limb showed predominately low potential with few high potential grids, while


comparatively the Tangon downstream had more grids with high and medium impact potential (**Map 6.1**).

Map 6.1: Impacts Potential of EHEP w.r.t. Terrestrial Biodiversity

6.2.2. Significance of the Impacts of EHEP on Terrestrial Biodiversity – Spatial Scale

This exercise indicates relative ranking of impact significance on biodiversity in the two basins taking into consideration the biodiversity values and impact potential values of the sampled grids. It clearly outlines that different parts of the study area will be affected with varying levels of impacts if the current hydropower plan is implemented (**Maps 6.1 &6.2**).

The negative impacts of the proposed dam and forest loss due to submergence and other activities on mammals, will likely be of medium to low significance in both the basins. Of the assessed grids w.r.t birds and butterflies, approximately 55% have high to medium impact significance implying that the impacts of EHEP on these taxa will be of high/medium significance particularly close to the confluence and the proposed dam locations. For vegetation as well, the significance of negative impacts of the dam and associated forest loss will be medium to high.

Map 6.2: Significance of Impacts of EHEP on Terrestrial Biodiversity

6.3 IMPACTS OF PROJECT ACTIVITIES ON BIODIVERSITY - MICRO LEVEL EVALUATION

In general, impact prediction methods argue that the foremost step in impact appraisal must consider and identify project actions that are likely to bring significant changes in the project environment. The list of proposed project actions likely to impact up on different components of the project area is detailed in **Table 6.1**. Though, the project development activities can be divided into four major activities like; 1. Construction of civil structures, 2. Mechanical and Electrical design, 3. Power Evacuation and 4. Infrastructure development, only civil construction activities are found to significantly affect the physical, biological and social components of the project area. Since the other mechanical, electrical and power evacuation activities lie well within the major civil construction area, not much impacts are likely to occur.

6.3.1. Predicted Impact Matrix

The level of impacts was predicted, with the understanding of the nature and list of project activities, and their locations, and correlating the estimated biodiversity values of floral and faunal groups and socio-cultural attributes of the project villages. The nature and magnitude (positive or negative, direct or indirect, short term or long term, local or strategic, reversible or irreversible) of impacts were evaluated based on the quantitative assessment of floral and faunal component like, species richness, species diversity index and presence of RET species. The impacts of proposed project on social aspect were assessed based on the natural resource depletion due to project and its impacts on resource dependency of local villagers inhabiting the project area.

Project activity-based impact matrix prepared with the understanding of nature of each activity predicted to have impacts on physical, biological and social values of the project area (**Table 6.1**). Since any project activity is expected to affect more than one component and the impacts are interlinked among physical, biological and social attributes, the magnitude of impacts is discussed on

the basis of project activities at micro level and their influence on different sub-components of biodiversity attributes: habitat, species group and specific species. The impact matrix prepared for some of the project activities are discussed below.

Conversion of land for the project implementation has been visualized as loss of habitat (terrestrial – forest, community land and aquatic – river and streams) and this will have direct impact on associated floral and faunal diversity. Loss of community land results in resource depletion.

Construction of all the mega structures like dam walls, power houses, tunnels and infrastructures, and associated earth work and excavation, material transportation. Are anticipated to impact all the terrestrial and aquatic components in the form of pollution followed by habitat degradation, which will indirectly lead to decrease in species richness and diversity of all the faunal groups.

Some of the supportive construction phase activities such as; muck dump handling, quarry activities, movements of heavy equipments, are visualized to affect specific faunal species like butterfly and avifauna due to severe dust oxides emission and habitat degradation, It is also predicted to have direct impact on herpetofauna and small mammals due to noise and vibration in the form of restriction of movements and population isolation.

Widening of existing roads and new road construction and intensive vehicle movement to transport all materials and work force are visualized to have direct impact on herpetofauna and small mammals in the form of road kills, but the magnitude will be minimal.

The positive impacts of infrastructure development like. additional roads, schools, health care facilities, skill development and job opportunities are expected to improve the life quality of local population.

On the other hand, migrant work force may influence on natural resources depletion, impact on faunal species, through indulging in illegal hunting and poaching and on local cultural values (**Table 6.1**).

The above predicted impacts are evaluated and discussed in detail, on the basis of specific project activities in the following sections.

~
S
<u>_</u>
0
6
6
÷
g
2
Ð
Ś
2
0
S
-
ų
-
0
-
>
\sim

Impact Matrix based on list of proposed Project Activities and their possible Impact on Physical, Biological and Social components of the	Etallin HEP Study Afea
Itrix based on list of proposed Project Activities and their possible Impact on Physical,	

		ш	ciailli ner oluuy Alea	iuy Area						
	Project activities/actions		Physical		Biological Aquatic	ical tic	Biological Terrestrial	gical strial	Social	al
		Land-Soil Forest & Riverine Habitat	Air Dust/Gas	Noise/ Vibration	Water - River & Stream	Fauna	Flora	Fauna	Resource	Social& Culture
-	Land Acquisition-conversion of Forest land/habitat project development	×			×	×	×	×	×	
2	Project Development Activities									
2.1.	. Construction of all civil structures									
	Dam, River diversion cannel, Intake, De-silting structure, Headrace tunnels, Surge Shaft, BVC- Pressure Shafts, Power House Complex. Dam- toe Powerhouses – Land preparation Excavation	×	×	×	×	×	×	×		
2.2.	. Mechanical and Electrical design									
2.3.	Power Evacuation									
2.4.	Infrastructure Facilities									
	1. Project roads, 2. Bridges, 3. Project Colonies, 4. Job facility areas, 5. Quarry and Borrow areas, 5. Muck Disposal areas. 6. Explosive Magazine, 7. Land Requirement, 8. Construction power, 9. Telecommunication and other facilities, 10. Security and safety.	×			×	×	×	×	×	
	Supportive activities									
2.4.1	Muck-dump handling – excavation, Disposal -	×	×		×	×	×	×		

151

Plan
/ation
onsen
fe C
Nildli

ETALIN HEP

	Project activities/actions		Physical		Biological	ical	Biological	gical	Social	al
					Aquatic	tic	Terrestrial	strial		
		Land-Soil Forest & Riverine Habitat	Air Dust/Gas	Noise/ Vibration	Water - River & Stream	Fauna	Flora	Fauna	Resource	Social& Culture
	Muck transportation and Dump development									
2.4.2	2.4.2 Quarry- Drilling, Blasting, and handling		×	×				×		
2.4.3	Project Roads - widening of existing roads and construction of new roads	×			×	×	×	×	×	+ X
2.4.4	Movements of Heavy Vehicles and Operation of Machines		×	×			×	×	×	
2.4.5	Construction of New Bridges				×	×				+ X
2.4.6	Workshops – hazardous waste disposal	×	×	×	×	×				×
с	Influx of Labour force- Project construction									
3.1	Construction of Labour colonies	×					×	×	×	
3.2	Dependency of Forest resources – NTFP, Bamboo and Wood resources	×					×		×	
3.3	Illegal activities – fishing, hunting and poaching							×	×	×
3.4	Indiscriminate solid waste disposal	×			×	×				
3.5	Influence on social and cultural values									×

6.4. LAND ACQUISITION - IMPACTS ON FOREST/COMMUNITY FOREST LANDS

One of first and foremost project activities is acquisition and conversion of land for the construction of power house and development of different project associated infrastructures. This proposed hydropower project involves conversion of the land area into different land uses, which include: Dam and Reservoirs, River diversion cannel, De-siltation structure, HRTs, Surge Shaft, BVC-pressure Shafts, Power house and Power house complex, and Dam-toe-power houses. In addition, part of the land will also be used for the development of other infrastructure facilities such as: additional roads, bridges, inbuilt power unit, office premise, residential colonies, labour camps, recreation centre, gardens, shopping complex, schools, play areas, hospitals, etc.

6.4.1. Acquisition of Forest and Community Forest Lands – Impacts of Habitat Loss and Biodiversity Values

The development of Etalin HEP project of Hydro Power Development Corporation of Arunachal Pradesh Limited (HPDCAPL) covers a total project area of **1155.11 ha** (Surface Land 1063.78 ha + Underground Area 91.33 ha) (**Table 6.2**). Therefore, conversion of both Unclassified State Forest (USF) and Community Forest Lands for the generation of 3097 MW Hydro Power and development of associated infrastructures are visualized to have the following direct / primary impacts:

Impact 1: Conversion of forest lands and followed by deforestation, earth works, soil erosion and land degradation are identified as loss of forest habitat- Direct and Primary Impact.

Impact 2: Loss of forest land would directly impact upon the floral community of the project area- Direct and Primary Impact

Impact 3: Decrease the biodiversity (species richness and abundance) status of major faunal groups inhabiting the forest habitat - Direct and Primary Impact.

Evaluation - Land Resources: For development of the project the land would be acquired for construction of project components, submergence area, muck dumping, quarrying, construction camps and colony, etc. According to the project land details, the proposed project required would be **1155.11** ha (Surface Land 1063.78 ha + Underground Area 91.33 ha) (Table 6.2).

S.no	LA	Name of the Component	Area (Ha)
1		RQ1 (Rock Quarry)	
2		RQ2 (Rock Quarry)	
3		Contractor / Owner site office and store	F0.00
4		Dumping Yard, DMD-4 (a)	58.02
5	LA-1	Dumping Yard, DMD-4 (b)	
6		Labour Camp-5	

Table 6.2: Land Requirement Details of EHEP-Project[For Legends (LA -1 to LA -21A) refer to figure 6.1 in page -176]

7		DT -RB(Diversion Tunnel- Right Bank); 3 Nos. (DRI LIMB)	
8		DT -LB(Diversion Tunnel- Left Bank); 1 No. (DRI LIMB)	
9		Dam/ Dam Toe Power House & Coffer Dam D/S	
10		Intake Structure	
11		Project Roads	
12		Explosive magazine/construction facility areas and labour camps (Right Bank)	
13		Work Shop, Warehouse, Store &	
14	LA -2	Parking Space-3 (Left Bank)	56.53
15		Dumping area DMD 5 (Left bank)	
16		Project Roads	
17		Dumping Yard, DMD-3	
18	LA-3	Dumping Yard, DMD-2	20.05
19		Total Road Area in LA -3	
20		Labour camps	00 00
21	LA-4	Total Road Area in LA -4	23.98
22		Store/ work shop for package- B	
23	LA-4A	Batching plant / main work shop	67.74
24		Contractors camp and owners camp office/residences	07.74
25		Provision for Priority Road (Dri Limb)	
26	LA-5	Road Area	2
27		Batching Plant/ work shop	
28	LA-6	Labour Camp-4	20.70
29		Dumping Yard, DMD-6	39.79
30		Total Road Area in LA -6	
31	LA-6A	Provision of facility area/explosive magazine and change in road alignment	12.33
32		Batching Plant	
33		Dumping site	00 50
34	LA-7	Aggregate crushing plant	80.56
35		Batching plant and aggregate stock piling	

36		Batching plant and work shop	
37		Total Road Area in LA -7	
38	LA-7A	Provision of change in portal & alignment of road	6.38
39		Batching Plant BM-6	
40		Batching Plant BM-7	
41		Contractor & Departmental Office-2	
42	LA-8	PQ-01 (Shoal Quarry)	100 65
43		Labour Camps	120.65
44		Power House	
45		Main store/workshop and facility areas	
46		Total Road & Bridge (PPB1) Area in LA -8	
47	LA-9	Dumping yard EM & HM Storage Workshop, Warehouse, store, Parking	
48		Total Road & Bridge (PPB1) Area in LA -9	
49		Owners temporary colony and office	
50	LA-10	Dumping Yard, PMD-2	11.31
51		Total Road Area in LA -10	
52	LA-10A	Provision of Shoal Quarry PQ-02	9.77
53	LA-11	Road Area	41.38
54	LA-11A	Provision of Shoal Quarry PQ-03	17.2
55	LA-ITA	Contractors colony and office and facility areas	17.2
56		Batching Plant and aggregate processing plant	
57		Labour camps for Contractors Colony-EM, HM &	
58	LA-12	Civil PH Works	EQ 70
59		Penstock fabrication yard	52.79
60		Dumping Yard, TMD-7 / PQ-02	
61		Total Road Area in LA -12	
62	1 4 4 9	Site office and work shop	0.00
63	LA-13	Total Road Area in LA -13	8.33
64	LA-13A	Provision of facility Area	1.5

		Main Drainat Office and Desidential Compute including school and	
65		Main Project Office and Residential Campus including school and hospital (Left Bank)	67.78
66	LA-14	Road & Labour Camp	
67		Main work shop and batching plants	
68	LA-14A	Labour camps for contractor (Right Bank)	31.49
69		Road Area	
70	LA-14B	Additional Bridge to access Adit T2 & T3	6.99
71	LA-14D	Contractors colony	
72		Dumping Yard, TMD-5	
73		Dumping Yard, TMD-4	
74		Batching Plant BM-3	
75	LA-15	Labour Camp -2	79.18
76		Dumping Yard, TMD-6	
77		Dumping Yard, TMD-7	
78		Aggregate crushing plant	
79		Total Road Area in LA -15	
80	LA-15A	Access to Adit T3 and explosive magazine	14.3
81		Adit T-1 portal re-located (Right Bank)	
82	LA-16	Workshop and construction facility areas (Right Bank)	23.27
83		Total Road Area in LA -16	
84	LA-17	Shoal deposit	16.24
85		Additional In-situ rock quarry	10.24
86		Stone Crucher TAPP-2	
87		Batching Plant BM-2	
88	LA-18	Contractor & Departmental Office Space-1	57.65
89		Store / workshop and construction facility areas	01.00
90		Dam/ Dam Toe Power House & D/S Coffer Dam	
91		Total Road & Bridge (PTB1) Area in LA -18	
92		Batching plant	32.82
93		Dumping Yard, TMD-2 and batching plant	JZ.UZ

		Total	1155.11
108	EBP	Project Colony & Office establishment	12.02
107	LA-21A	Provision of foot track along Tangon reservoir	6.89
106	LA-21	& Project Roads	JU. 12
105	LA-21	Tangon Reservoir, U/S Coffer Dam	36.12
104	LA-20C	Provision of priority road (Dri area)	6.16
103	LA-20B	Additional land for road to Dam top	9.32
102	LA-20B	Provision of foot track along Dri reservoir	0.22
101	LA-20A	Realignment of existing road to be submerged & provision of dumping yard u/s of dam	20.44
100		PQ-04 (shoal quarry)	
99	LA-20	& Project Roads	83.32
98		Dri Reservoir, U/S Coffer Dam	
97		Total Road Area in LA -19	
96		DAM/ DAM Toe Power House	
95		Diversion Tunnel (Tangon) 3 Nos.	
94	LA-19	Workshop, Warehouse, Store & Parking Space-1	

ETALIN HEP

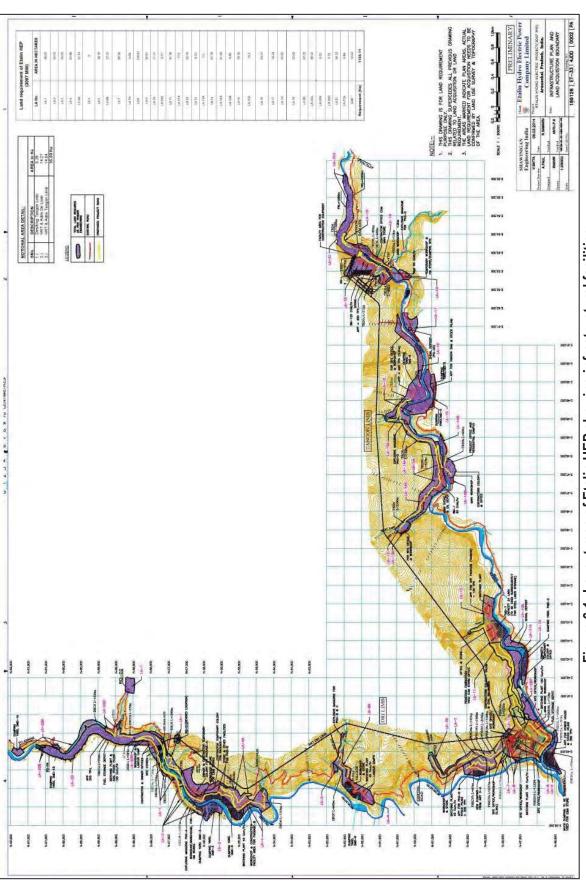


Figure 6.1: Layout map of Etalin HEP showing infrastructural facilities

Evaluation – Biodiversity Resources: Biodiversity status assessment of flora and different faunal groups showed record of 413 plant species, 159 species of butterflies,113 species of spiders, 11 species of odonates, 14 species of amphibians, 31 species of reptiles, 230 bird species, and 21 mammals within the proposed project study area. Among the faunal groups studied, secondary information for the study area was available only for butterflies, avifauna and mammals. Butterfly (159 species) species contributed 88.8% of the cumulative list of species for the study area (**Tables 5.11**, **5.16 & 6.3**). Though the avifauna richness contributed 86.07% of the possible cumulative list, the species diversity estimated for the 87 species showed low diversity of H' 1.07 (**Tables 5.29 & 6.3**) and very low to low abundance status (**Tables 5.27 & 5.28**). Mammalian fauna of the study area shared only 50.6% of the cumulative species list and most of the species (15 species) were found in low abundance (71.4%) out of 19 species reported (**5.41 & 6.3**).

Though conversion of 1155.11 ha (Surface Land 1063.78 ha + Underground Area 91.33 ha) land area of forest habitat was identified as direct impact of loss of habitat (**Impact 1**) and floral diversity (**Impact 2**) and associated faunal groups (**Impact 3**), along with considering the mandatory proposed compensatory afforestation program, would qualify these direct impacts **as construction phase and moderate level of impacts.** Added, adapting proper ecological restoration of degraded forest patches and areas, recovered from temporary project use and implementing suggested biodiversity and wildlife conservation plan would compensate the loss of habitat and is expected to recover the species richness and abundance of faunal diversity of the project area after construction phase of the project.

Biodiversity	Sp	ecies Rich Study Are		Possible Cumulative	R% of Study Area Species
	Family	Genera	Species	Species	
Flora			413	593	69.6%
Butterfly	6	77	159	179 (EIA)	88.8%
Moths	12	45	51	SS-NA	
Odonates	2	5	11	SS-NA	
Spiders	25	88	113	SS-NA	
Fishes	4	9	12	SS-NA	
Amphibian	6	12	14	SS-NA	
Reptiles	6	23	30	SS-NA	
Birds	55	138	230	237 (EIA)	97.0%
Mammals	15	19	21	42 (EIA)	50.6%
EIA – re	port 2015, SS	– secondary	/ Source, NA-N	Not Available, R% - R	elative percent

Table 6.3: Species Richness status of different Faunal Groups of EHEP Study Area.	Table 6.3:	Species	Richness	status of	different	Faunal	Groups	of EHEP	Study	Area.
---	------------	---------	----------	-----------	-----------	--------	--------	---------	-------	-------

H' - Species Diversity, SS-NA – Secondary Source - Not Available

6.5. PROJECT ASSOCIATED ACTIVITIES - IMPACTS ON BIODIVERSITY

6.5.1. Muck-Dump Generation and Handling – Impacts on Physical (land, air and water) and Biological Resources (habitat)

The project would generate substantial quantity of muck due to implementation of diverse project development activities. Since the project area is predominately undulating in nature the entire muck dump handling activities: excavation, collection, loading and transportation and storing in the dumping yards, are visualized to have impact on the physical (air, noise, water) and biological (flora & fauna) resources as follow:

Impact 4. Excavation and handling of muck would create significant quantity of dust emission which would deposit on the adjacent land area and vegetation cover and is likely to create habitat degradation – Direct and primary impact

Impact 5. Land degradation would indirectly lead to decrease of floral and faunal diversity

Impact 6. The muck dumps developed would create visual intrusion impact along the river limbs and in the forest landscape- Indirect and secondary impact

Impact 7. Development of large sized muck-dumps with steep slopes along the river side may restrict the movement of small mammals and their access to the river habitat - Indirect and secondary impact.

Evaluation – Muck and Dump Area: The project would generate substantial quantity of muck from excavation for various structures. The total quantity of muck-dumps generated due to excavation is estimated to be 108.9 Lac m³ and the net quantity to be disposed to the muck dumping yards works out to be 95.00 Lac m³. Considering land suitability and in order to reduce the lead distance, a total of 113.70 ha has been identified for muck-dump yard spread over 12 locations with 7 sites on Dri limb, 4 sites on Tangon limb and 1 site near powerhouse (**Table 6.4. & 6.5**). Considering the quantity of muck to be generated, extent needed for muck dump sites, which are identified along the Dri and Tangon limbs and power house areas and handling activities, the anticipated habitat degradation (**Impact 4**), decrease of fauna diversity (**Impact 5**), have been evaluated as moderate level of operational phase impacts. Other impacts, visual intrusion (**Impact 6**) and restriction of movement of small mammals (**Impact 7**) are indirect and long-term impacts. Implementing appropriate technical interventions at micro level site selection and structural management of dump and timely restoring the muck-dumps with suitable plant species can help in minimising all the impacts (see **Mitigation Chapter 7**.)

Item	Quantity (Cum)
Total quantity of muck generated	16564523
Muck can be used as coarse aggregate	4829797
Total usable quantity	11734726
Source: EHEPCL- EMP Rep	oort 2015

Table 6.4. Details on total quantity of Muck	Table 6.4.	Details	on total	quantity	/ of Muck
--	------------	---------	----------	----------	-----------

S. No.	Dumping Yard	Plan area (ha)	Capacity (Lakh/cum)	
	DRI LIMB Area			
1	DMD1	2.44	2.29	
2	DMD2	4.28	5.81	
3	DMD3	4.26	7.11	
4	DMD4	Not Required		
5	DMD5	19.94	26.5	
6	DMD6	13.4	9.58	
7	DMD7	4.94	12.24	
8	DMD8	16.97	24.69	
	Sub Total	66.23	88.22	
	TALO (TANGON) Limb area			
1	TMD1	Not Required		
2	TMD2	Not Required		
3	TMD3	Not Required		
4	TMD4	6.51	6.39	
5	TMD5	13.31	25.76	
6	TMD6	10.21	23.97	
7	TMD7	9.94	13.97	
	Sub Total	39.97	70.09	
	Powerhouse Area			
1	PDM1	Not Required		
2	PDM2	7.5	4.84	
	Sub Total	7.5	4.84	
Grad Total		113.7	163.15	

Table 6.5. Details of Muck Dumping Sites

Total Plan Area = 113.70 Ha

Total Capacity = 163.15 lakh Cum

Total muck to be disposed = 117.35 lakh cum

Source: EHEPCL- EMP Report 2015

6.6 DUST AND OXIDES EMISSION- IMPACTS ON FOREST HABITAT AND FAUNA

6.6.1. Impacts of Construction Activities - Dust and Gaseous Emission on Vegetation and Faunal Diversity

Other than muck dump, all other civil construction activities like; excavation, landscaping, handling of construction materials (import, store, transporting to the construction site) and concert works for the construction of dams, power houses and power house complex, other proposed infrastructures and heavy movements of vehicles and equipment operations are found to be the major sources of dust emission (**Table 6.6.**). These activities generate enormous quantity of windblown dust particles (Particulate Matters) and gaseous (So2 & Nox) emission that would deposit on the adjacent forest habitats and impact the habitat quality and faunal diversity well beyond project area as follow:

Impact 8: Habitat degradation and loss of forest cover in the adjacent and or beyond the project area – Direct and Primary impact

Impact 9: Affect the species richness and abundance status of faunal species of the adjacent forest habitat- mainly the insect fauna and avifauna using ground and middle layers of vegetation cover- Indirect and secondary impact.

Evaluation of Air Quality: Monitoring for assessment of ambient air quality was carried at eight stations across three seasons (winter, summer and pre-monsoon), for four air components within the project area (**EIA Report 2015**). The summery results revealed that, all the components such as; So₂ values ranged from 5.6 to 8.9, NO_x 12.2 to 16.8, PM10 maximum of 27.1 and PM2.5 12.9 μ g/m^{3+,} were well within the permissible limits for annual and 24 hours time scale for the industrial, residential, rural as per CPCB and ecologically sensitive area as per MOEF &CC norms (**Table 6.6**).

Air quality Parameters	Range - ["] g/m³			Permissible Limits MOEF&CC Norms			
	Mim	Мах	IN-RE-RU	ESA			
SO ₂ ng/m³	5.6	8.9	Annual 50 ⁿ g 24 hour 80	Annual 20 ⁿ g 24 hour 80			
NOx ^ŋ g/m³	12.2	16.8	Annual 40 24 hours 80	Annual 30 24 hours 80			
PM ₁₀ րg/m³		27.1	Annual 60 24 Hours 100	Annual 60 24 Hours 100			
PM _{2.5} րg/m³		12.9	Annual 40 24 Hours 60	Annual 40 24 Hours 60			
Source: Compiled from EIA Report (EHEPCL) RS ET Pvt Ltd 2015							

Table 6.6: Summary Details of Ambient Air Quality Status Monitored in the EHEP Study Area

IN- Industrial, RE- Residential, RU- Rural, ESA - Ecologically Sensitive Area, MOEF&CC – Ministry of Forest and Environment & Climate Change

Evaluation- Selected Faunal Diversity: the study area reported high richness of butterflies (159 species), moths (51 species) and spiders (113 species) species (**Table 6.3**) and except for butterflies (EIA Report 2015), there are no earlier studies on these taxa specific to the study area. Among the 87 species of the avifauna majority of them were found to use the ground and middle canopy layers and predominately insectivore species (**52 species- 59.8% - Table 5.34**). Even though, all the air quality parameters found to be within the permissible limit of MOEF&CC norms, the status discussed is preproject scenario. Therefore, considering the spatial distribution of these faunal groups and magnitude of project construction activities, the above predicted impacts (**Impacts 8 and 9**) can be evaluated as highly significant construction phase impacts. Dust and gaseous emission being the most common and inevitable impact in any development of mega projects and minimization of construction phase impacts can be done only through adopting appropriate mitigation measures.

6.6.2. Drilling and Blasting for Coarse and Aggregates Quarry – Impacts of Noise and Ground Vibration on selected Faunal groups

One of the major sources of noise pollution is quarry activities which involves drilling and blasting to generate coarse and fine aggregates for the construction of all the civil works and roads. In addition, heavy machineries and vehicles will be used for excavation and transportation of the coarse and aggregates from at source to different end use sites. These activities will have some adverse impact on the ambient noise levels in the project area which would directly affect the selected faunal species;

Impact 10: Change the normal behaviour (day to day activities) of major faunal groups of the project area – Secondary and indirect impact.

Impact 11: The impacts of noise and ground vibration would affect reptiles and ground dwelling small mammals in term of restriction of movement - Secondary and indirect impact.

Impact 12: Some larger groups of faunal species might move away and disappear from the project area and thereby reduce the abundance status- Primary and direct impact.

Evaluation – Quarry Activities/Drilling and Blasting: The estimated total requirement of coarse and fine aggregates as construction material is 32.82Lac m³ and 18.92 Lac m³ respectively. Most of the requirement of coarse and aggregate will be met from the rock excavated from tunnels and underground works and the remaining will be quarried from identified sites for quarries. A total of about 10.75 Lac m³ has been anticipated to be extracted from 2 Nos. of identified Rock Quarries (RQ). Similarly, the requirements of fine aggregates will be met from 4 Nos. of identified Shoal & Sand quarries (PQ). About 9.43 Lac m³ is anticipated from the various identified quarries for fine aggregates and the rest will be obtained by crushing the potential muck generated from the underground excavation (Source: **EHEPCL Project report volume-I, Part-B, 2013).**

Evaluation of Ambient Noise level: Monitoring of ambient noise level study was carried out at eight stations across three seasons for day and night hours limits within the project area. The summery results revealed that, overall the noise level ranged from 55.9 to 61.8 dB (A) day time observation (**Table 6.7**).

Seasons	Range	Winter range	Pre-monsoon	Monsoon	
	Minimum	57.0	56.4	55.9	
	Maximum	60.9	60.5	61.8	
Overall range		Minimum 55.9 and	Maximum 61.8		
Limits in (dB	Category of Area (Prescribed Standards)				
(A) Leq	Industrial area	Commercial area	Residential area	Silence Zone	
Day Time	75	65	55	50	
Night Time	70	55	45	40	
Source: Compiled from EIA Report (EHEPCL) RS ET Pvt Ltd 2015					

Evaluation - Impact on Faunal groups: However, the project area is located predominately in forest habitat and inter spread with villages, the observed limits of noise level was slightly on the higher side for residential (rural) and forest (silence zone) during both day and night hours, compared to the overall range prescribed as standards for industrial and commercial areas. Therefore, the pollution impacts will affect the selected faunal species (birds 230 species, reptiles 31, and 21 species of mammals) in the form of change in daily activities (**Impact 10**), restricted movement (**Impact 11**) and local disappearance (**Impact 12**). Further, the abundance status of bird species showed that almost all the species fall under very low to low categories in the study area (**Table 5.30 & 5.31**) and mammalian fauna was also estimated to be in very low abundance (0.106 captures (animals)/1552 camera nights - (**Table 5.43**). Even though, these impacts are expected to last for 84 months (seven years) of construction period, it would be of moderate level of impacts due to noise, which need to be attended with some technical and managerial interventions (**Ref Chapter 7**).

6.7. ROADS, HEAVY VEHICLE AND EQUIPMENT MOVEMENTS – IMPACTS ON FAUNAL GROUPS

6.7.1. Unregulated Vehicle Movement - Road Mortality on selected Faunal groups

Construction of network of new roads and widening of existing roads and frequent movement of heavy vehicles and heavy equipments for the construction activities and transportation of lobous and technical staffs, in the project area is anticipated to impact upon the selected faunal groups of the project area, like

Impact 13: Fragmentation of natural habitats and isolation of populations of lesser mammals and herpetofauna which are reluctant to cross the roads - Indirect and long-term impact.

Impact 14: Herpetofauna and smaller mammals are prone to accidents / road kill due to intensive vehicle Movements-Direct or secondary impact.

Impact 15: Intensive movement of vehicles will reduce the birds and other mammal species richness and abundance in the habitats along the road sides

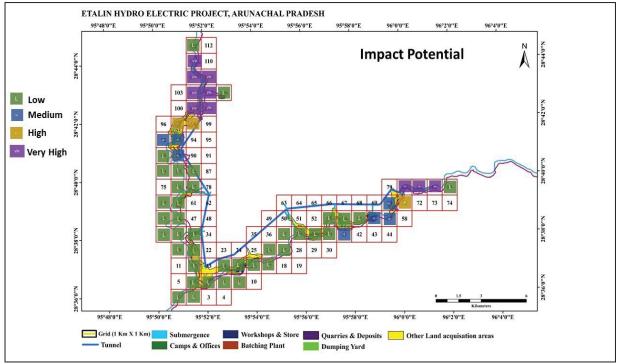
Evaluation- Network of Roads and Vehicle Movements: The proposed project has plan to develop additional network of roads of 50km length within the project area to approach various locations of project sites. In addition, 35km stretch of existing roads within the project area, are planned to be widened and strengthened for the movement of heavy equipment and machinery (Source: EHEPCL Project report Volume-I, Part-B, JULY 2013)

Evaluation- Use of Heavy Equipments: All the project construction activities will involve use of many types of equipment / machineries, which can be grouped in to heavy, supportive and miscellaneous. The compilation of equipments data showed that, a total of 28 heavy and 13 supportive types of equipments will be in use with 50 and 16 capacities. In addition, many other miscellaneous accessories will be used (**Table 6.8**). It is understandable that the construction of various activities in both the limbs will happen concurrently in a phased schedule. Hence, many equipments may be reused. The DPR of EHEPCL does not provide information on actual number of equipments will be required for the construction considering the reusing of equipments. These uses of equipments, their movement and operation are predicted to have impacts.

Table: 6.8. Summary Details of Equipments in use for all Project Construction Activities

S. N.	Heavy Equipments/ Machineries	Types/ Capacity	No of Units	S. N.	Supportive Equipments	Types /Capa city	No of units
1	Alimak Raise Climber	1	4	1	Rock Bolder	1	2
2	Excavator s: Capacity- 3.0/2/1.57 cum	3	16	2	Gantry shutters	1	5
3	Rear end Dumpers 25 T/15 T cap/ Bobcat excavator/	3	270	3	Rib Bending Machine	1	7
4	Dozers: Dozers/ Crawler dozer / 90 HP/324 HP/ Tyre Doser	3	45	4	Ventilation Blower (110 kW)	1	5
5	Jack Hammers 120 cfm	1	193	5	Tractor Trollies	4	14
6	Rock bolter (for anchoring on slopes)	1	7	6	Jet Grouting set	1	2
7	Wagon drill 400 cfm	1	96	7	Motor Graders	1	5
8	Compressors 100/300/450/500/600/1000/1450/160 0 cfm /Diesel	8	91	8	Water Sprinkler	1	5
9	Two -Boom Drill Jumbo	1	18	9	Penstock fabrication yard	1	6
10	Loader: Front and Back hoe - 2.3 cum	1	21	10	Sand blasting equipment	1	2
11	Concrete pump 40/ 25 cmu/hr	2	21	11	Hand held Rock drills	1	18
12	Transit Mixers (6 /4cum capacity)	2	126	12	Scissor Platform	1	2
13	Hydraulic Platform/Truck Jumbo	1	9	13	Steel Shutters	1	5
14	Excavators: Hydraulic Excavators (3 /105/1.84 cum)/ Bobcat excavator 0.5 cum	4	24		Total	16	78
15	Grout Pump/200cfm	1	49		Other Accessories lot in numbers		
16	Concrete Placer 1cum	1	11	1	Needle Vibrators (65mm dia. Needle)		Lot
17	Shotcrete Machine	1	21	2	Blasting Accessories		Lot
18	D.G. Set 500/1010 kVA	2	17	3	Dewatering pumps of different capacity		Lot
19	Tower Cranes (10 T – 3 cum /18T- 6cum bucket	2	6	4	Grouting Accessories		Lot

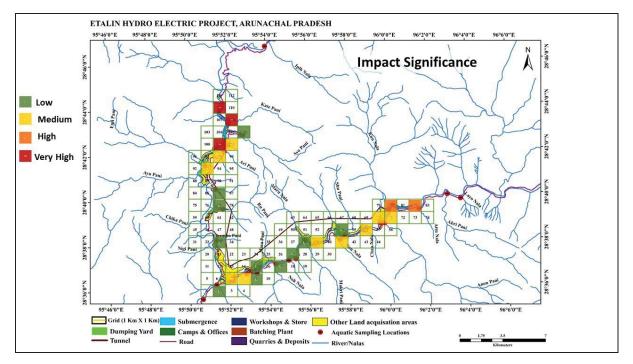
S. N.	Heavy Equipments/ Machineries	Types/ Capacity	No of Units	S. N.	Supportive Equipments	Types /Capa city	No of units
20	Cranes : Mobile Cranes (35T)/ 40T/8/10T/ 8MY & Rough terrain crane / Gantry crane (30T capacity)	6	16	5	Steel Formwork and Vibrators		Lot
21	Winch: Capacity of 10T/and 30T Others	2	10				
22	B & M plants (160 cum /hr)	1	1				
23	Aggregate crushing plant- 500 T/hr	1	2				
24	Collapsible hydraulic gantry	1	2				


Source: compiled from: EHEPCL- Detailed project report (final), volume-I, Main report Part-B, 2013

Evaluation- Status Faunal Diversity: This study identified presence of 14 species of amphibians, 31 species of reptiles, 230 species of birds and 21 mammalian species within the project study area. The species which are shy and reluctant to cross the roads may get isolated into small population because of construction of 50km of new roads and widening of 35 km of existing roads (**Impact 13**). Intensive vehicle movements and use of the equipments during the construction phase are likely to increase road mortality of herpetofauna as well a small mammal (**Impact 14**). The bird species, which are dependent on forest habitat along the road sides are expected to decrease in their richness and abundance (**Impact 15**). Therefore, these impacts should be mitigated / tackled with some managerial regulation and technical measures suggested in mitigation chapter.

6.8. IMPACTS ON AQUATIC ECOLOGY

6.8.1. Impact Potential of the EHEP with respect to Aquatic Biodiversity


The impact potential of the EHEP was assessed for grids containing the main stem of Dri and Tangon river as well as their major perennial tributaries (**Map 6.3**) using the criteria defined previously. Grids containing the proposed dam, submergence areas and immediately downstream of the proposed dams (possible dry river stretches) have very high to medium impact potential values. The inflow of tributaries in most of the grids below the dam might have the potential to diffuse the dam impacts on the flow regime, contributing to low impact potential values. Also, relative to the dam and submergence areas, the impacts of muck disposal into river would be less. It should be noted that the impact potential of the grids. It is highly likely that the impact potential values calculated here are an underestimation of the actual impact potential, which would be only quantifiable with detailed data on the natural flow regimes and how they would be altered due to the dams.

Map 6.3 Impact potential of EHEP w.r.t. aquatic biodiversity

6.8.2. Significance of the Impacts of EHEP on the Aquatic Biodiversity

This exercise indicates relative ranking of impact significance on biodiversity in the two basins taking into consideration the biodiversity values and impact potential values of the sampled grids. It clearly outlines that different areas of the study area will receive variable levels of impacts if the current hydropower plan is implemented (**Map 6.4**). The negative impacts of the EHEP on the aquatic biodiversity will be highly significant (very high-high impact significance) in both the basins due to the dam and submergence areas, which would cause river fragmentation and convert lotic habitats to lentic habitats. In the rest of the areas, downstream of the dams, several areas will be subjected to impacts of medium significance due to the downstream impact of dams on the flow regime as well as other activities such as muck disposal. Several breeding/congregation sites as well as migratory routes of long-distance migrants would be negatively impacted due to reduced flows and the barrier effect of the dam.

6.8.3. Impacts on Habitats - Water Quality and Physical Changes

Barriers, such as dams dramatically decrease the native fish diversity and dissolved oxygen content, making it unsuitable for other aquatic life, especially periphytona and benthic invertebrate community. Fish and other aquatic species population get isolated due to barrier effects of dams. In the case of cold-water fishes, they are much specialized in their habitat, diet and local environmental preferences, therefore, they have very restricted range of distribution. Any hydrological regulation would impact their movement, fragmenting the genetic flow between population, reducing feeding and spawning habitats, thereby putting them closer to extinction. The environmental consequences of dams are numerous and varied, and includes direct impacts to the biological, chemical and physical properties of rivers and riparian (or "stream-side") environments.

Apart from blocking fish migrations, it completely submerges fish spawning grounds such as confluence of tributaries, reophilic habitats and run habitats. The dam also traps sediments, which are critical for maintaining structural integrity of running water ecosystem.

Another significant and obvious impact is the transformation upstream of the dam from a freeflowing river ecosystem to a lacustrine habitat. Changes in temperature, chemical composition, dissolved oxygen levels, nutrient status, productivity, nutrient cycle and the physical properties of a reservoir are often not suitable to the aquatic plants and animals that evolved with a given river system. Indeed, reservoirs often host non-native and invasive species that further undermine the river's natural communities.

Within the study area, the upper reaches of the reservoir may not be affected very much as the original riverine conditions. Downstream of the dam the flow rate in the river will depend on the amount of the compensation flow. Water volume is considerably reduced during the dry season. Due to decreased water discharges, water temperature will rise in daytime and decline sharply at night. Both the river Tangon and Dri the water quality will affect in the power house area such as (Mayo pani, confluence of Dri and Tangon river), both the dam construction area (dam axis), dumping yard.

Sediments which will be deposited during construction decrease the dissolved oxygen level of the water, and increase the water temperature.

6.8.4. Assessment of Impacts on Aquatic Biodiversity

With respect to aquatic biodiversity, fishes such as snow trout, catfish and loaches may be pulled into the intakes and get killed. Even riverine fish adapted to fast current may be lost. Benthic insects – a primary food for many fishes will be highly affected by reduced flow rates. Mahaseer (Tor sp) are known to be affected directly by the changes in their habitat, which leads to stunted growth, prone to diseases and parasite infestation and thus resulting high mortality.

During monsoon (may, June, July) season and heavy rainfall, some fish do migrate from main river to the streams such as (anon pani, ayo pani, shu pani, achali basti nala, makhri pani, chambo pani, noh nala, mayo pani, kabo pani, ru pani, emi pani, ayu pani, aha pani, aru pani, ayo pani, illi pani) for laying eggs. Road cuttings and dam construction may cause lot of change in the channel morphology, which may destroy spawning ground and obstruct migratory route. The resident species may congregate in the tail water release site. Fish from upstream will occasionally sweep downstream during the monsoon, stay in the tail water or swim further downstream. The dam will obstruct the route of the long and mid-distance migratory fish. Upstream migrants will arrive at the dam site during the flow phase. Long distant migrants species will be most affected by the dam. These species will abandon the original pool and colonize deep pool regions downstream or upstream. Populations of snow trouts are less affected, as they make a small-scale migration to tributaries to breed in clear and cool water during the monsoon and return to the main stream during the low flow period.

During the construction phase, the main impacts will arise due to clearing of vegetation and earthmoving activities, which will mobilize sediments, causing them to be washed or blown into receiving watercourses. Increased sediment loads will have two consequences – firstly turbidity will increase, affecting visual predators, fish and filter feeders, and secondly, sediments will settle out causing cobbled substrates to become embedded. This will affect species with a high requirement for clean water and clear, cobbled substrates. Migration of fish may be affected by the design of the bridge and road cutting beside the River. During the construction phase, there may be a loss of sensitive species.

During the operational phase, underground blasting and transport of ore and slurry will commence. The impacts listed for the construction phase are likely to be on-going (although their magnitude may decrease slightly. It is possible that there will be a further loss of sensitive aquatic species as water quality and habitat integrity decline further. The waterfall tributary is likely to be affected by decreased flows and loss of habitat (including waterfalls during drier periods). With the influx of people, the introduction of alien fish, which might prey on indigenous species, cannot be ruled out.

There are many impacts that have been visualised and discussed in detail, related to impacts on River Habitats - Water Quality and Physical Changes (**Refer section: 6.8.3**) and Impacts on Aquatic Biodiversity (**refer Section 6.8.4**). This being r project and highly dynamic and sensitivity of the aquatic ecosystem, maintaining the environmental flow or e- flow during the post construction and operational phase is highly crucial. Taken into consideration of the ecosystem sensitivity, selected mitigations in the form of technical interventions such as: **Waste Debris Dump management, Maintaining Stream**

Morphology, and Domestic Solid Waste Disposal are suggested to mitigate some of these impacts (see Mitigation Chapter 7).

6.8.4.1. Impact of construction and widening of Roads

Though the impact of new roads and widening on selected faunal groups discussed in the above **Section 6.7.1**, the following are the additional impacts of road construction activities on forest and aquatic habitats:

Impact 16: Damage to the forest habitat and faunal diversity along the road on riverside slopes due to runoff debris

Impact 17: Runoff debris reaches the river system and impacts the bathymetry, sedimentation problems and overall aquatic ecology of riverine habitat.

Impact 18: The road cutting due to construction of new roads across the streams will impact the migration of fishes from the main rivers to streams to lay eggs.

Construction of new roads to a length of 50km and widening of existing roads for 35km is visualized to have impacts on both the forest and riverine habitats. Dumping of the excavated waste debris with larger and heavy boulders and earthen material along the river side slopes will roll down and completely damage the vegetation cover of forest habitat/bank vegetation (Impact **16**) and finally reach the river system and changes the bathymetry and increase the sedimentation load (Impact **17**). Hence proper **Waste Debris Management System** needs to be followed to address the impact on both the habitats. (**Ref -Chapter 7**)

Added, to the above mentioned impacts, construction of roads across the streams will form road cuttings that would stop the local migration of fishes from the main rivers to the stream systems to lay eggs during monsoon season (*Impact 18*). This can be mitigated by giving importance to construct culverts/bridges even across small streams to Maintain the stream morphology and free migration / movement of fishes (see Chapter 7).

6.8.4.2. Impacts of Hazardous and Domestic Waste Disposal – River system

Many of the proposed project construction activities form major sources of different kinds of effluents and most of them are hazardous. Other waste disposals include sewage and solid waste from the labour camps and project staff colony. Haphazard way of disposing these wastes, especially hazardous waste expected to have serious impact on both the terrestrial (forest) and aquatic (river) environments.

19. Pollution and degradation of the forest habitat and indirectly affect terrestrial biodiversity

20. Solid and effluent disposal and dispersal into river system will impact water quality and associated aquatic biodiversity especially fish fauna.

Around 1155 heavy equipments/machineries of different capacities are estimated to be in use of all the project construction activities (**ref section 6.7.1 - Evaluation- Use of Heavy Equipments**) and at present estimation of the quantity of effluent that will be generated is not possible. Hazardous waste will be generated during construction phase from machinery and equipment using fuel, lubricating oil, batteries etc. disposal of waste oil drums, used oil, maintenance and washing of equipments and vehicles are the sources of activities that will surely impact the project environment. Similarly, around

12,000 outside migrants (project people) estimated to be involved in project construction activities. Sewage from the labour camps and colony and solid waste generated from both will be biodegradable as well as non-biodegradable. Overall indiscriminate disposal all the waste surely will significant impact (**Impact 19 and 20**) at least during construction phase. Hence, in addition to establishment of ETP for sewage disposal and well structure waste management, additional management systems are needed for complete mitigation (**See Chapter 7**).

6.9. IMPACT ON THREATENED BIODIVERSITY

6.9.1. Overall of Project Associated Construction Activities - Impacts on Threatened Fauna

Presence of any threatened faunal species in the study area of the project is likely to get impacted due to the above discussed all project related activities (excavation, construction and transportation, storing and handling of project materials and maintenance) in the form of:

Impact 21: Loss of specific habitat of the threatened faunal species of the project area-Direct and primary impact.

Impact 22: Overall habitat degradation, fragmentation, mortality and population decrease of threatened faunal groups – due to overall project activities– Direct and indirect impacts.

The assessment of impacts of project on threatened species was discussed considering the species that fall under highly threatened categories such as; Critically Endangered (CR), Endangered (EN) and Vulnerable (VU) of IUCN Red list and Schedule I species of IWPA (1972).

Evaluation - Flora: this study reported diverse floral species of 413, belonging to 110 families and 275 genera, and this included only *Piper pedicellatum* a shrub species listed as Vulnerable in IUCN Red List. However, in the present study area it is found in abundance and estimated as very high-density species and ranked second under Prominence Value Index of shrubs (**Table 5.3**). Therefore, local abundance does not necessitate any specific conservation plan for this species.

However, the floral richness of the Dibang valley which covers large extent of area, reported very high conservationally important threatened and endemic flora of Arunachal Pradesh which needs to be considered for conservation (See: Box 6.1). Keeping the short survey of the present study, it is very important to carry out intensive survey specific to record epiphytic flora, like orchids, pteridophytes, lichens and fungi to develop arboretum / botanical garden exclusively under floral species conservation plan (see Chapter 7 – Conservation Plan)

Box 6.1: Floral species of Conservation Importance - Dibang Valley (source CIA & CCS – Report 2016)

Orchids:

- Out of 199 orchids species documented in Dibang basin, 150 are epiphytes and 46 are terrestrial orchids, while three species were of mycotrophic habit (living in association with mycorrhiza).
- Gastrochilus calceolaris, and Paphiopedilum fairrieanum are listed under Critically Endangered category as per IUCN Red List, while Bulleyia yunnanensis has been listed under Endangered category in Red Data Book of BSI. It has listed Paphiopedilum fairrieanum under EN category while Galeola falconeri and Vanda coerulea have been placed in indeterminate and rare categories.
- Six orchids reported from Dibang basin are endemic to Arunachal Pradesh viz, Calanthe

densiflors, Dendrobium cathcartii, D hooherianum, Eria ferrugines, Galeola falconeri and Paphiopedilum fairrieanum.

Threatened species:

 In Dibang basin 30 plant species are under different threat categories as per IUCN or under Red Data Book of BSI. According to IUCN category four species *Dipterocarpus gracilis*, *Gastrochilus calceolaris*, *Paphiopedilum fairrieanum* and *Saurauia punduana* have been listed as Critically endangered (CE). Eight species under Endangered (EN), five species as Vulnerable (VU) and three species as Near Threatened (NT).

Endemic species:

• Fifty-three species that are endemic to Arunachal Pradesh have been reported from Dibang valley and they belong to 28 families and 42 genera.

Evaluation - Butterfly: the project area reported 159 species of butterflies, of that only three species, Pale Jezebel (*Delias samaca Moore*), Scarce Jester (*Symbrenthia silana* de) and Spotted Black Crow (*Euploea crameri nicevillei*) were listed under Schedule 1 part 4 of IWPA (1972) – **Annexure 5.4.** Considering the impacts of dust and gas emission, noise and vibration due to project related activities (excavation, drilling, blasting, vehicle movements and use of heavy machineries) followed by habitat loss and degradation, it is very important to conserve butterfly species, as they help in pollination. This can be possible through development of open and closed butterfly parks at few sites, in the recreational gardens planned to be developed, in the areas like; office premises, staff colonies, school and hospital areas.

Evaluation - Herpetofauna: the survey reported 14 species of amphibians and none of them fall under the three categories of IUCN (CR, EN, VU) and Schedule I of IWPA. All the species reported belong to Data Deficient (DD) and Least Concerned (LC) categories of IUCN list (**Annexure 5.8**).

Out of 31 species of reptiles listed from the study area, only three (Bengal Monitor Lizard (*Varanus bengalensis*; Schedule I species), Burmese Python (*Python bivittatus*; Vulnerable and Schedule I) and King Cobra (*Ophiophogus hannah*; Vulnerable) species were identified as conservation importance, under IUCN and IWPA list (**Annexure 5.8**). Since the presence of these three species was reported based on the social survey, their abundance status was not known. Therefore, the magnitude of impacts of project activities on the threatened reptile species may not be significant. However, common mitigation measures are suggested to minimize the road mortality of herpetofauna, which is likely to help to protect these species in the study area.

Evaluation – Birds: Out of possible 237, including 230 species reported during this study. five species were listed as schedule I under IWPA, seven species as near threatened under IUCN Red List, and seven species that were endemic to Arunachal Pradesh. Therefore, overall 16 species have been identified as species of conservation importance of the study area. Among the list, except for Kalij pheasant - *Lophura leucomelanos* (11 birds) - Schedule I of WPA (1972), White-naped yuhina *Yuhina bakeri*- (18 birds), and Yellow-vented warbler *-Phylloscopus cantator* (nine birds), both endemic species, the remaining were represented by only one or two birds (**Table 5.38**). The list of species belongs to diverse foraging guilds and record of few individuals (low abundance), it is not feasible to suggest any species specific conservation plan. Habitat development and restoration of degraded forest patches and effective awareness program to control bird hunting by the local people are some management options that would help in conserving the overall avifauna as well as the threatened species of the project area.

In addition, under species group conservation, providing nesting niche in the form deploying nest boxes to support the hole nesting species of the study area can be done under experimental basis and that can be extended followed by monitoring study.

Evaluation- Mammalian Fauna: Among the 21 mammal species reported in the study, five are listed as threatened under different categories of the IUCN Red list (**Table 5.45**), while three species were listed as Schedule I of the Indian Wildlife Protection Act (IWPA, 1972) namely, Himalayan Serow - *Capricornis thar,* Asian golden cat- *Catopuma temmincki* and Leopard cat *Prionailurus bengalensis*. Among these species except for *Prionailurus bengalensis* - Leopard cat (33 camera trap captures), rest of the species were with very low capture rate.

The secondary information added 10 more threatened species, which are inhabiting the upper reaches of Dibang valley, and none of them reported in the study area (**Table 5.46**). Added, the social survey on hunting revealed that, the ethnic hunters of the study area have to walk 2-4 days to hunt the species like; Takin, Musk deer, Red Panda, Bear, Goral, Himalayan Serow and Wild Dog, which indicates that these species are not using the habitat in the immediate vicinity of the project area (**Figure 5.12**). Despite the low capture rate of the species of conservation significance, it is very important to carry out intensive long term monitoring of threatened mammals within the study area and also well beyond in the Dibang Valley, which also supports, another 10 RET species of higher altitude (**Table 5.46**).

6.10. BIODIVERSITY USE VALUES OF LOCAL PEOPLE

6.10.1 Loss of Forest Habitat and Impact on Natural Resource Dependency of Local People

The requirement of land for the project development is **1155.11 ha** and most of the forest habitat come under Unclassified State Forest (USF) and Community Forest Lands. The locals being ethnic groups and having rights to use forest resources, the loss of forest land is visualized to impact on resource dependency of the local villages in the line of:

Impact 23: Loss of forest and community lands expected to increase the biotic pressures on the adjacent forest areas by the relocated project affected villagers - Indirect and Secondary impact

Evaluation- Project Affected Villagers: Social survey identified about 20 villages, 178 families and 839 people are likely to be affected due to the proposed hydropower project. Even though, part of the affected families planned to settle in Anini, and plan of number of families to be re-located in other areas is not known. Study on source income of the PAFs revealed that, 50% of the people directly or indirectly depend on the forest-based resources. Therefore, displacement or re-location of project affected families intend to depend on the natural resources in the adjacent forest area and thereby affect the biodiversity values in the forest habitat of outside project area. Proper livelihood options to generate permanent incomes in terms of job opportunity in the project and self-employment through CSR activities would minimise the impact on forest based natural resources in the additional forest areas (**Impact 23**).

Impact 24: Loss of forest habitat and impact on forest resource decrease and accessibility

Evaluation- Biodiversity Use Values of Local People: Social survey, reported that more than 50% of the PAFs depend on natural resource for income generation. Within the natural resource collection 86.0% depend on NTFP, 39.77% hunting, 37.99% fish collection and 35.75% collect timber for their requirements. Collection of NTFP include 24 edible and fodder plants, and eight species of medicinal plants (**Tables 5.51, 5.52, 5.53**). The locals also hunt 30 and 43 species of mammals and birds respectively for their protein requirements respectively (Annexures **5.13 & 5.14**).

Evaluation of Accessibility of Natural Resource: As per information gathered from local people during field survey, bamboo collection and hunting will be affected due to proposed project as bamboo garden /plots would be affected under various land acquisitions. As mentioned earlier, bamboo plays a very important role in terms of their livelihood, while culturally also it has very high significance (Table 6.9). Every clan has its own reserve bamboo garden / plot on community owned forest. So, after resettlement they will lose access to community owned bamboo gardens. People also complained that they will have to travel far off places for hunting, once the project starts commissioning. However, project will have low impact on hunting as people in general travel to far off places for hunting, in addition to the employment generation by the project, that will reduce stress on hunting. *Paris polyphylla* and medicinal plants such as *Coptis teeta* will have no impact, as such due to project activity because it is collected from alpine meadows, which is way beyond project area. Overall the impact on natural resources found to low in all the cases, except for bamboo (Impact 24).

Activities	Access	Impact	Remark
Fodder Collection	No change	Low	Collected near Forest Fringes near roadside
Wild Edible Plant Collection	No change	Low	Collected near Forest Fringes near roadside
Medicinal Plant Collection	No change	No	Collected from alpine meadows and mainly Coptis teeta is collected
Paris polyphylla collection	No change	No	Collected from alpine meadow
Bamboo Collection	Decrease	Medium	People will have limited access after Resettlement
Cane Collection	No change	Low	Collected from outside PA
Hunting	Decrease	Low	Constructional activity due to project will disperse animals and hunters will have to travel greater distance for hunting

As per the people's response, among the natural resources they depend, expect for that medicinal plant, *Paris polyphylla* collection, the accessibility and resource depletions of rest of the resources will have low to medium impacts.

6.10.2. Labour force related Biotic Pressure- Impact on Forest Resources and Faunal Species

The construction of different project structures planned for seven years and requires few thousands of manpower from outside the project area. Involvement of outside work forces for the project development activities visualized that, in addition to establishment of labor colonies in the forest land area, the following impacts on forest resources and faunal species and, many impacts of social aspects are visualized and listed below;

Impact 25: Migrant depend on forest-based resources like; NTFP and tree cutting for timbers and fuel wood and thereby depletion of local resources and conflict between the migrant labors and local villagers.

Impact 26: Involve in illegal activities like; and poaching of birds and animals – Direct impact on selected faunal groups and resource crunch for local ethnic hunters.

Impact 27: Aquatic and terrestrial habitat degradation - domestic sewage disposal

Evaluation- Migrant Work Forces: Manpower requirement for the project construction activities is estimated to be about 3000 people. Based on experience of similar projects and some assumptions (technical staff emigrating into the area, family of workers both the husband and wife, only husband will work, service provider's family and family size – 5 members etc) the estimated migrants are to be around 12,000 people which is 149.9% increase of the human population during the construction phase of the project.

The direct impacts project due to loss of forest habitat on natural resource dependency of the local villagers found to be low in most of the cases, and medium in bamboo (**Table 6.9**). However, sudden increase of 150% of migrant population is predicted to have additional direct impacts (**Impacts 25 and 26**) on biodiversity resources due to illegal collection of NTFP, timber, bamboo and hunting of birds and animals. Added to that, considerable amount of domestic sewage disposal is expected to degrade the forest and river and stream habitats of the project area (**Impact 27**). Strict enforcement of management intervention to stop all the illegal activities would completely reduce the above discussed impact. In addition, very effective awareness education to the locals and migrants is suggested to minimize the hunting pressure.

Impact 28. Influx of large number of migrant population- Impacts on the cultural values of the local community

Evaluation – Cultural Values: The local people of the project area belong to Idu Mishmi tribes and they are traditional food gatherers, i.e., gather wild food. Idus have very elaborative rules and taboos regarding hunting of animals. "Mithun" a domesticated form of wild gaur is reared and is allowed to forage in the forest and it plays an essential role in socio-economic and cultural life of the Idus. Some of the impacts discussed by the locals specific to cultural values are intercultural mixing and influx, traditional grazing practice of Mithun, hunting culture, illegal settlements and women safety because of likely domination of large number of project (**Table 5.57**). Therefore, mitigation measures need to be devised through interaction between project proponents and high-level village committee to mitigate the impacts on cultural values of the local people as well as monitoring of Inner line permit of the migrants for illegal settlement (**Impact 28**).

6.11. Impacts on Ecologically Sensitive Area -ESA

6.11.1. Vicinity of Ecologically Sensitive Area to Project location - Impacts on Ecologically Sensitive Area

Presence of any area of conservation significance, such as Wildlife Sanctuary, National Park, IBA, wetlands, wildlife migratory route and heritage sites, in the close vicinity of the project site is expected to have some direct and indirect, impacts specifically on faunal species as well as overall habitat status. Possibilities of occurrence of impacts on ESA, entirely depends on the spatial distribution and the type of project. Therefore, the existing ESA and their location are discussed to predict the likely impacts.

Evaluation –ESA: Secondary information on area of conservation significance/eco-sensitive zones revealed that, no such Eco-sensitive areas are located in the close vicinity of the project site i.e., within 10k radius. Analysis of spatial distribution of the area of conservation significance showed only two Protected Areas located in the close vicinity of the project site *viz.*, Dibang Valley Wildlife Sanctuary (DWLS) and Mehao Wildlife sanctuary (MWLS). However, the linear distance between the tail end of the submergence of Dri – Dam and Tangon Dam to DWLS was 12.8 km and 12.2 km respectively, towards north-west direction of the northern boundary. This being a hydro power project, no any impacts are likely to occur in the up-stream of the dam sites and in the catchment area – where the DWLS is located. Similarly, the location of MWLS, which is in the southern direction was 40.4 km from the proposed power house, and the Dibang river, that flows from the confluence of Dri and Tangon, where the power project is planned, is also not passing through the sanctuary area. The longer distance and location of both the sanctuaries show that, the hydropower project is not likely to affect both the ESAs (**Map 6.5**).

6.11.2. Project location on Wildlife Corridor – Impacts through Restriction of Movement of Key Species

Wildlife Corridor-Tiger movement: Status of mammalian fauna in the project area confirms to be of low abundance. Though, many large to medium sized mammals are reported in the upper reaches and in Dibang Valley, *viz.*, larger cats (Clouded Leopard, Common Leopard, Snow Leopard and Bengal tiger) and other ungulates (Mishmi Takin, Alpine Musk Deer and Red goral), none of them are reported in the study area due to the location of the project in the lower altitude (600 to 1500) which seems to be not suitable for them due to the following reasons.

Existing Biotic pressures – Project Area: Presence of 22 villages within the project area along the Dri and Tangon limbs and associated shifting agriculture, collection of NTFP, timber, bamboo and cane collection, and other resources leading to degradation of the habitat quality in the proposed project area. Further, regular hunting activities could be a significant factor that reduce the faunal diversity and abundance. Even though, they have traditional right to use the forest resources including hunting of animals, these anthropogenic pressures might be limiting the movements of tiger through the dri and Tangon river limbs because of low prey base.

Existing Vehicle Traffic - Project area: The existing traffic density estimated at eight sampling locations within the project area across three seasons showed traffic density of 479 vehicles/hour (**Table 6.10**). Irrespective of types of vehicle, in any given season (three season)/any location (eight locations), a total of 20 vehicles/hour move in the project area. Extrapolation of the vehicle intensity, 20 vehicles x 8 hours x 365 days showed that a total of 58,400 vehicles move in the

project area in a year. The very high intensity of vehicle movements in the study area could also be one of the factors restricting the movement of tigers in the project area.

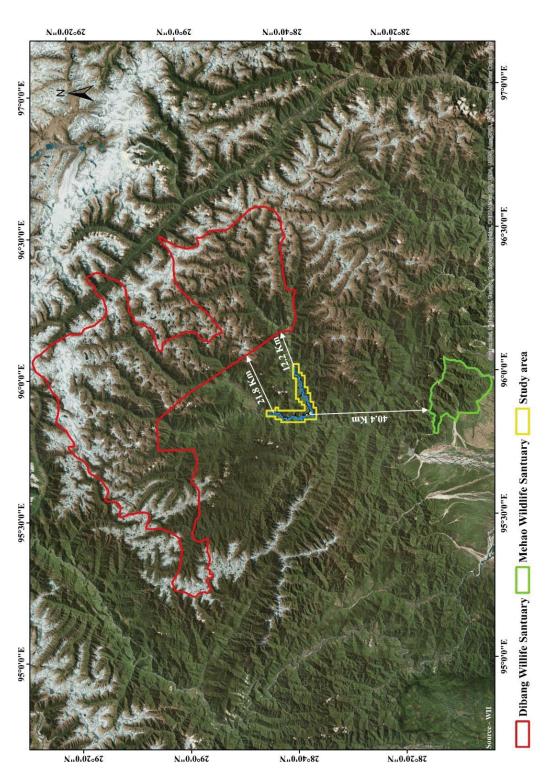
Local's Perception: Social survey and interaction with the local hunters to list the species they hunt also confirm that, though they do not hunt tigers due to cultural belief (the *Idu Mishmi* community do not hunt the tiger as it is considered as next to human kin – **Refer section 5.4.3.4**), they opined that, tiger can be seen only after 2-4 days walk from the river limbs to the upper reaches of Dibang valley and they are never seen in and around the project area.

Seasons	Heavy Vehicles /hr	Light Vehicles/hr	Two Wheelers/hr	Total /hour
Winter	22	56	115	193
Summer	22	49	71	142
Monsoon	26	54	64	144
Total /hour	70	159	250	479
Source: EIA Rep	port (EHEPCL) RS E	T Pvt Ltd 2015	160 – 20 - 1280	

Table 6.10: Status of existing Traffic Density and Vehicle Movement in and around Study Area

Present Mammal Survey: Based on the issues discussed above, and recording of only 21 mammalian species with very low abundance (less than one animal/1552 trap nights). After deploying 78 cameras for 1552 trap night/days in four months' survey, no tiger was camera trapped. Thus, tiger presence in the study area was not established. Therefore, low availability of prey species in general and absence of larger prey species in specific, along with human related disturbance in the area, could be the reasons for tiger not using the project area (**Table 5.42 and 5.43**).

Tiger movement: The long-term monitoring study on mammalian fauna using camera traps in DWLS (October 2015 to July 2016 and November 2016 to June 2017), showed record of few tigers outside the DWLS, especially along the southern boundary. The linear distance measured for the three nearest records (locations) of tigers outside the DWLS and between the boundary of proposed project site ranged from 10.2 km to 14.0 km from the north (tail end of submergence) of the Dri and Tangon reservoir areas respectively (**WII a – Ongoing study) Map 6.6.** Another ongoing camera trap study on mammals in lower Dibang valley in Mehao Wildlife sanctuary, in the last eight months (October 2017 to May 2018) reported presence of 23 species with 22 species being camera trapped and one arboreal mammal *viz*. Eastern Hoolock Gibbon was directly sighted. The 22 camera trapped species does not include tiger, as till date no tiger has been camera trapped (**Table 6.11 - WII b – On going study**)


Tigers inhabit diverse habitat types, and are distributed even in very high altitudinal range and gradients in this region, they have been camera trapped at an altitude of 3630 m in snow in community forests in Dibang Valley District (**Map 6.7**). It has been reported at a distance of approximately 10 km north from the northern boundary of the EHEP study site. Though the project area is a potential habitat for tigers, this present study did not document the occurrence within the project area. The existing cumulative impacts of the above-discussed factors like, presence of villages, road widening and construction, habitat degradation, hunting, high vehicle movements and low prey base may be the

reasons for tiger not using the area. Further, considering availability of large extent of suitable habitat in the surrounding environs well above the project area, this hydropower project is not visualized to restrict the movement of tigers occurring in and around the DWLS into any direction in the entire Dibang Valley. In spite of all the above given reasons, considering the importance of conservation, monitoring of tiger distribution and movements need to be continued in Dibang Valley and Lower Dibang Valley districts, in addition to a long-term monitoring project that should be initiated beyond the project area and especially in the eastern and western hill ranges of the project site.

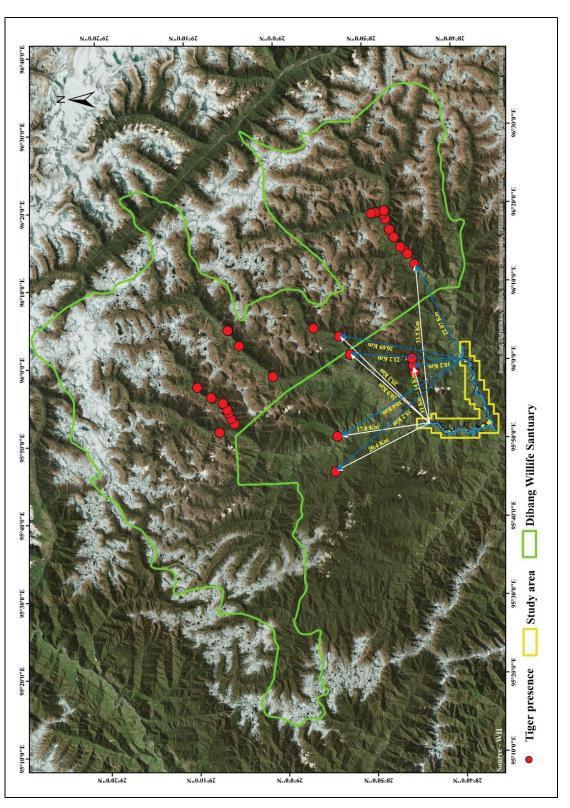

S.No.	Species	Scientific Name	IUCN Status
1	Eastern Hoolock Gibbon **	Hoolock leuconedys	Endangered
2	Assam Macaque	Macaca assamensis	Near Threatened
3	Indian Muntjac	Muntiacus muntjac	Least concern
4	Hog Deer	Axis porcinus	Least concern
5	Mishmi Takin	Budorcas taxicolor	Vulnerable
6	Himalayan Brown Goral	Nemorhaedus goral	Near Threatened
7	Himalyan Serow	Capricornis thar	Near Threatened
8	Indain Wild Pig	Sus scrofa	Least concern
9	Clouded Leopard	Neofelis nebulosi	Vulnerable
10	Asian Golden Cat	Catapuma temmincki	Vulnerable
11	Marbled Cat	Pardofelis marmorata	Vulnerable
12	Leopard Cat	Prionailurus bengalensis	Least concern
13	Spotted Linsang	Prionodon pardicolor	Least concern
14	Himalayan Palm Civet	Paguma larvata	Least concern
15	Large Indian Civet	Viverra zibetha	Vulnerable
16	Wild Dog	Cuon alpinus	Endangered
17	Asiatic Black Bear	Ursus thibetanus	Vulnerable
18	Yellow Throated Martin	Martes flavigula	Least concern
19	Yellow Bellied Weasel	Mustela kathiah	Least concern
20	Indain Crested Porcupine	Hystrix indica	Least concern
21	Asiatic Brush-Tailed Porcupine	Atherurus macrourus	Least concern
22	Palla's Squirrel	Callosciurus pygerythrus	Least concern
23	Himalayan Striped Squirrel	Tamiops macclellandi	Least concern

Table 6.11: Checklist of Mammals of Mehao Wildlife Sanctuary, Lower Dibang Valley, Arunachal
Pradesh (Source: WII Ongoing Study)

** species not trapped in the cameras: Source - WII b - ongoing Study

Map 6.7: Tiger Camera Trapped at an altitude of 3630 m outside Dibang WLS in Community Forest (Source: WII Ongoing Study)

CHAPTER 7: Mitigation – Biodiversity and Wildlife Conservation Plan

7.1. INTRODUCTION

"Mitigation Measures," refer to action plans that can be implemented to minimize the magnitude of the project related detrimental impacts on different physical, biological and social environments of the project area. It involves planning and implementing measures to prevent adverse impacts from occurring, and in case this is not possible, to limit their effects to a tolerable level. Different hierarchical approach of mitigation measures are: **Avoiding impacts** by modifying a proposed plan of actions in order to prevent or limit a possible impact, which is highest priority and should always be considered in mitigation; **Minimizing impacts** by implementing decisions or activities that are designed to reduce the undesirable impacts of a proposed activity; **Rectifying impacts** by rehabilitating or restoring the affected environment; and **Compensating** for the impacts by replacing or providing substitute resources or environment, which is a last option and might include so-called offsets (GPG-ICMM 2006).

As part of the proposed Etalin HEP project, in Dibang Valley district of Arunachal Pradesh, the conservation and management plan, however involves considering all the above-mentioned concepts, it also considered the State Biodiversity Conservation Strategy Action plans (SBCSAP) and Biological Diversity Act (2002).

With this understanding and prevailing project environment and biodiversity status, some biological interventions are suggested to take care of both, to minimise the identified impacts and enhance the biodiversity, which is the prime goal of the present study. Therefore, the suggested mitigations fall under the categories of **minimizing**, **rectifying** and **compensating** the impacts. The mitigation measures recommended are broadly grouped in to four sub-categories such as: 1. mitigation to minimise the impact of bio-physical environment – land, water and air, which are likely to have direct or indirect effects of biological and social components on need basis, 2. Biological environment – habitat, flora and fauna, 3. Social environment – natural resource enhancement, livelihood improvement and awareness education to reduce the biotic pressure and, 4. Biodiversity enhancement – species groups / Communities, species and threatened fauna.

7.1.1. General Priorities for Biodiversity and -Wildlife Conservation Plan

The nature of EHEP project and its associated construction and operational phase activities, the findings of the biodiversity status, including the indigenous people and other considerations, are the project contribution to cumulative effects identified, evaluated and discussed in detail in previous chapter on Impact (**Chapter 6**). The major impacts identified are as follows:

1. Land acquisition for project - Loss of habitat.

- 2. Muck-Dump Generation and Handling Impacts on bio-physical and biological resources.
- 3. Dust and gaseous emission- Impact of habitat degradation and decrease of faunal diversity.
- 4. Drilling and Blasting Impacts of noise and vibration on selected faunal groups.
- 5. Roads, heavy vehicle movements Impacts of animal movements and isolation.
- 6. Unregulated Vehicle Movement Road mortality on selected faunal groups

7. Overall Project Construction activities - Impact of aquatic ecosystem

8. Overall Project Construction activities - Impacts on RET Species / Species of Conservation Significance

- 9. Overall Project Implementation Impact of biodiversity use values of Local People
- 10. Influx of Labour Force Impact on forest resources and Cultural values

11. Project Location - Impacts on ecologically sensitive area

However, suggesting and implementing mitigation measures for all impacts may not be practically feasible. Hence, major impacts have been priorotised and mitigations suggested for implementation.

This conservation plan has been drawn taking the existing scenario into consideration and mainly for the betterment of habitat quality of the forests and other ecosystems in the project areas. The conservation and management plans suggested here are mainly the issues identified during the survey, specific to biodiversity values of both terrestrial and aquatic systems and the local's perception on the effects on biodiversity use values. The following are the major biodiversity conservation issues and management plans suggested.

7.2. PRIORITY ISSUES FOR MITIGATION AND CONSERVATION PLAN

7.2.1. Compensatory Afforestation: Loss of Habitat

Compensatory Afforestation - is the first plan of action and mandatory to mitigate the loss of habitat due to conversion of forest land for the project implementation. However, in most of the cases, the afforestation program is done just like an ordinary plantation with single species are multispecies of exotic and non-local / non-native species, rather than following scientific approach. Therefore, some scientific approaches are suggested under this mitigation plan.

7.2.2. Green Shelterbelt – Phyto-remediation: Impacts of Dust and Gaseous Emission

The impacts on air environment, would indirectly affect the biological values (habitat, flora, fauna) of the project area in terms of habitat degradation. Therefore "Green Shelter Belt Development – Phyto-remediation", a biological intervention is suggested for improving the ambient air quality and minimise the impacts of dust and gaseous emission.

7.2.3. Muck-dump Management and Restoration – Terrestrial and Riverine Habitat

Large quantity muck / waste dumps will be generated due to excavation activity for the tunnels and construction of different project structures. The proposed excavation in different location is kind of mining activity, hence need to strictly follow similar management actions prescribed for mining pertaining to muck/waste disposal. Therefore, **Muck/waste dump handing- Technique** is prescribed to avoid impacts associated to dust emission.

7.2.4. Technical and Managerial Interventions - Drilling and Blasting Effects on Selected Faunal Groups

Drilling and blasting for the, construction of HRT, widening and deepening of river beds along the down streams are one of the major supportive activities of the project implementation, that is visualised to have impact on selected faunal groups. Therefore, Technical and Managerial Interventions are suggested to minimise the impacts of noise and ground vibration on ground dwelling fauna groups.

7.2.5. Spatio-temporal Regulatory Mechanism - Roads and Vehicle Impacts on selected Faunal Groups

Heavy vehicles movement, and different types and capacities of heavy equipment will be in use for the construction activities and other project structures. The magnitude of vehicles movements and equipments to be used in terms of numbers and for a longer period of seven years, is predicted to have impact on selected faunal species like – birds, butterflies, herpetofauna and smaller mammals of the project area. Therefore, with understanding of field scenario, mitigation measures are suggested under "Spatio-temporal Regulatory Mechanism" to minimise the habitat degradation, and Technical intervention – to avoid road mortality.

7.2.6. Species Group Conservation Plan – Habitat / Niche Enhancement or Development.

Among the faunal groups surveyed, butterfly and avifauna, reported high species richness. Therefore, to mitigate all the above impacts related to physical component (habitat loss, degradation and dust and gaseous emission) and their effect on overall faunal diversity, the following species group specific conservation plans are suggested under habitat/niche enhancement / development program.

- Conservation of high species richness of Butterfly groups through the development of open and or closed "Butterfly Parks"
- Conservation of high species richness of avifauna through "Facilitating Nesting Niche" deploying nest boxes for the primary and secondary hole and cavity nesting bird species.
- Record of only 31 species of reptiles with low abundance and record of only three RET species / species of conservation significance, based on field and secondary sources, it is recommended to develop open "Reptile Park Habitat /Niche" in an area /site earmarked for solid waste deposal.

7.2.7. Aquatic Ecosystem

Many impacts have been discussed in detail on Impacts on River Habitats - Water Quality and Physical Changes (**Refer section: 6.8.3**) and Impacts on Aquatic Biodiversity (**refer Section 6.8.4**). This being river runoff project, and aquatic ecosystem is highly dynamic and sensitive, maintaining the environmental flow or e- flow during the post construction and operational phase is highly crucial. Therefore, selected mitigation measures are suggested specific to aquatic biodiversity in the form of some technical and managerial implications such as: **Waste Debris Management, Maintain Stream Morphology, Waste Disposal Management – Industrial and Domestic (**by the migrants in the respective appropriate sections.

7.2.8. Habitat Rehabilitation and Restoration – Impact on RET species

Biodiversity status survey of the project area resulted in high species richness of flora, birds, butterfly, moderate level of other entomofauna, herpetofauna and mammal species, and presence of few RET species. However, low abundance status of most of the species and few individuals of threatened species, along with predomination of forest and river habitat and absence of any critical habitat, it was not possible to suggest any threatened species and habitat specific conservation plan.

- Nevertheless, keeping the importance of biodiversity conservation in total and importance of species of conservation significance (RET& endemic species), different representative Habitat Rehabilitation and Restoration plans are suggested to enhance the overall habitat quality of the study area so that, the RET species / species of conservation significance of the project study can have benefitted.
- RET Flora: High floral diversity was reported in the project area (498 plant species) with only one threatened plant *Piper pedicellatum*, listed as vulnerable species under IUCN (Table 5.4 & Annexure 5.1). Being endemic to Arunachal and was found in high density in the study area, no any specific conservation plan is necessitated. However, keeping the floral uniqueness of the Dibang valley; diversity of orchids, threatened and endemic species, pteridophytes and lichens and fungai (See Box 6.1), it is recommended to develop a "Threatened Floral Gene-Pool Plot TFGPP" in the close vicinity of the project area.
- RET species of Herpetofauna, birds and mammals: The project study area also reported 230 species of birds including five schedule I under IWPA, seven species as near threatened under IUCN red list, and seven species endemic to Arunachal Pradesh (Table 5.38 & Annexure 5.9). The 31 species of reptiles included three threatened species of reptiles (Annexure 5.8). Further, the project study area reported 21 species of mammals with eight threatened fauna (Table 5.45), including the species reported in the Dibang wild life sanctuary the list goes up 42 species with overall of 18 threatened mammals in the close vicinity of the project study area (Table 5.45 & 5.46). Due to the low abundance of these faunal groups, and diverse dietary/foraging patterns, habitat requirements and use; species and habitat specific conservation plan is not possible. Therefore, overall the above suggested Habitat Rehabilitation and Restoration Plans, Butterfly Parks, Facilitating Nesting Niche and Reptile Park- Habitat / Niche are predicted to enhance the abundance status of some of the RET fauna.

7.2.9. Natural Resource and Life Quality Enhancement – Loss of Forest based Natural Resource

The entire local population belong to forest dependent ethnic group and 50% of the project affected people depend on forest resource (NTFP, Hunting, fishing and collection of wood resources) for income generation and survival. Further, the locals also hunt 30 and 43 species of mammals and birds respectively from the forest. Therefore, conversion of community land for the project implementation has been visualised to have natural resource depletion for the forest dependent local villagers and also restrict the access to the forest resources, which need to be addressed.

The number of outside project workers, estimated to influx in the project area. is around 12,000 people (150% increase in existing project area population) and their dependency on

forest resources would also create forest-based resource (both NTFP and Wood resources) conflict, in addition to increase in illegal poaching and hunting, which is direct threat to faunal biodiversity and biodiversity use values of the locals that is partly linked with cultural values.

- Implementing "Natural Resource Enhancement" plans, would facilitate to cater and improve the resource lost due to depletion and also prevent the re-settled project affected villagers to put pressure in the adjoining / additional forest habitats. The following are some of the resources needed to be developed
- 1. Grass and Leaf Fodder Plots for Mithun
- 2. Bamboo Plantation
- 3. Wild edible Plant Garden
- Life Quality Enhancement is the best way of mitigation. mainly through providing job opportunity in the project activities and self-employment through income generation schemes. This would partly minimize the forest resource dependency.
 - 1. Providing job opportunity
 - 2. Create Income generation sources
 - 3. Health Care

4. Improved education facilities

Well informed and effective "Awareness Education Programs" on biodiversity conservation and ecosystem services needs to provided, for both the locals and migrant populations. The awareness programs would cover the themes: Sustainable resource use, Hunting of wild animals and Resource depletion and conflicts.

- Initiate and involve locals in preparation of **Peoples Biodiversity Register**, which would collectively mitigate the hunting pressure, in addition to taking care of issues related to resource conflict.
- Strict enforcement of Anti-Poaching Mechanism and monitoring to stop the illegal activities by the migrant, would take care of the resource conflict as well as decrease / curb biodiversity use values of the villagers.
- In addition to the influence of project on natural resource depletion, additional pressure and conflicts on forest resources, cultural values are likely to be impacted due to migrant population. Being a social issue, that needs to be tackled with Stakeholders Interaction among the villages, district administration and project proponent level through formation of Village level, Village Forest Management Committee (VFMC) / Village Natural Resource Management Committee (VNRMC) and village cluster level Eco-development Committee (EDC).

7.2.10. Research and Monitoring – Ecologically Sensitive Area and Key Species Monitoring

Dibang Valley Wildlife Sanctuary (DWLS) and Mehao Wildlife sanctuary (MWLS) are the two ecologically sensitive areas located nearest to the project area. However, the linear distances estimated are found to be around 12.5 km (DWLS from Study area) and 40.4 km (MWLS from Study area) on the hill ranges in the up and down stream of the project area, respectively (**Map 6.5**).

Movement and migratory route of the key species (mammalian fauna), and specific to tiger was assessed based on the long-term camera trapping study in DWLS, showed the nearest tiger location was 10.3 and 11.0 km north of the project site. Another ongoing study in MWLS, did not establish the presence of tigers in the last eight months camera trapping. The present study also documented that, tiger occurrence in the project area was not confirmed, mainly due to the existing biotic pressures and low prey base (**Refer: Section 6.11.2**).

In spite of all the above given reasons, considering the importance of conservation, **monitoring of tiger distribution and movements** need to be continued in upper and lower Dibang Valley, in addition to a long-term monitoring project that should be initiated beyond the project area and especially in the eastern and western hill ranges of the project site.

7.3. ACTION PLAN - MITIGATION AND CONSERVATION PLAN

The previous sections discussed diverse mitigation and conservation plans based on the issues identified during this present study and rationale for the implementation of the suggested plans. Further these plans can be grouped into three types such as, 1 Mitigation plans – Mandatory, 2 Conservation Plans – Biodiversity enhancement and 3. Conservation plan – Biodiversity and Resource enhancement of Peoples' use values. The mitigation plans are mandatory under the MOEF&CC to avoid and minimize the impacts identified on bio-physical component, which would indirectly influence the biodiversity attributes of the study area and is already incorporated in the EIA & EMP plan. However, some of the plans suggested here are biological interventions for improving the project environment. While the second level of conservation plans are very important and focused mainly on the direct impacts on biodiversity of project area and to enhance the biodiversity at species group, species specific and social use value levels. The third level of conservation plans is to address the loss of natural resources on which the ecosystem people (local ethnic group) depend, and resource depletion due to project implementation and migrant people related to the project (Table 7.1.).

RECOMMENDED MITIGATION AND	PLAN OF ACTIONS
CONSERVATION PLANS	
I. MITIGATION PLANS	1. Compensatory afforestation
	2. Green shelterbelt- Phyto remediation – Dust and Gaseous
	emission
	Muck-dump management and Restoration
	4. Technical and Managerial Interventions – Noise and Vibration
	 Technical and Regulatory Mechanism – Road Mortality of wildlife
II. CONSERVATION PLANS –	Species Group conservation plan – Habitat/ Niche
BIODIVERSITY	development.
	6.1 Butterfly Parks
	6.2. Reptile Park – Habitat / Niche
	6.3. Facilitating & Enhancing Nesting Niche
	7. Habitat Rehabilitation and Restoration –RET Species
	8. Threatened Floral Conservation Plot- TFCP

Table 7.1. Categorization of the Mitigations and Conservation Plans

RECOMMENDED MITIGATION AND	PLAN OF ACTIONS
CONSERVATION PLANS	
	Action Plans: 6.1, 6.2,
	9. Aquatic Habitat and Biodiversity – Mitigation and biodiversity
III. CONSERVATION PLANS –	10. Natural resource and life quality enhancement
BIODIVERSITY & RESOURCE OF	
PEOPLES' USE VALUES	
	10.1. Grass and leaf fodder plots for Mithun
	10.2. Bamboo plantation
	10.3. Wild edible plant garden
	Life Quality Enhancement
	10.4. Providing job opportunities
	10.5. Create Income generation sources /options
	10.6. Health Care
	10.7. Improved education facilities
	10.8. Encourage sports and games
	11. Awareness Education Programs
	11.1 People biodiversity Register
	11.2. Sustainable Resource Use
	11.3. Regulation on Hunting of Wild animals
	12. Anti-poaching Mechanism
	13. Stakeholders Interaction – Cultural Values
	14. ESA- Research and Monitoring

7.4. MITIGATION - MANDATORY ACTION PLAN

7.4.1. Compensatory Afforestation

Compensatory afforestation is one of the foremost mitigatory measures that comes under the compliance of MOEF & CC to address the loss of habitat and associated biodiversity. In general, the area identified for the afforestation program need to be in the close vicinity of the project area. However, in some cases, due to non-availability of site and needed extent of area, the afforestation program is shifted to far-off sites from the project area. Added, most of times the afforestation is done with single species (mono culture) or planting of fast-growing exotic species, which is against the concept of biodiversity conservation, the prime objective of the present study. Therefore, under these heads the following suggestions are made for the afforestation program (**Table 7.2**). The total budget required for Compensatory Afforestation is Rs. 67,50,000/- for five years, the break for which is detailed in **Table 7.23**.

Mitigation Theme	Action Plan
Compensation to Habitat	1. Select the diverse native plant species of different habits (tree,
Loss	shrub, woody creepers, grass and herbs) for plantation.
	2. Strictly avoid monoculture and exotic species.
	3. High preference should be given for planting the 13 trees, 14 shrub
	and 18 climber species suggested under afforestation program
	(Annexure 7.1).
Compensate the	4. Since the suggested 13 tree and 14 shrub species are native and
decrease in biodiversity	secured high IVI and PVI values, they are the ecologically potential /
	promising species that would provide high survival rate if all the pre-
	planting land preparations and planting are well taken care
	5. Best practice is to collect seeds of all these possible wild tree, shrub
	and stragglers species involving local villagers – local tribes those
Additional habitat for	who are familiar with these species and also engage them to
species colonization	develop nurseries (at least one each along Dri and Tangon), owned
	by project proponent, for all the plantation activities owned
	6. The top soil management is one of the important aspects, and first
	step in habitat restoration activities. Therefore, top soil from all the
	areas identified for the construction of different structures and for
	different project related activities, should be taken / removed and
	managed in proper manner
	7. Where ever possible transfer topsoil from areas being stripped,
	immediately to areas being reclaimed rather than to long term
	topsoil storage locations (this will help ensure survival of soil seed
	bank and aid reclamation- Hall et al 2009).
	8. Using the top soil during land preparation can be excellent source of
	seed bank of native herb and grass species. Therefore, no special
	effort needed for growing grass and herb species.
	9. In addition, few more tree and shrub species of the local forest
	habitat can be supplemented to increase the floral diversity in, the
	afforestation program.
	10. All the technical aspects of land preparation, planting, after care,
	and management need to be carried out with the well experienced
	(at least 10 years) forestry expert with two field taxonomist /
	biologists. 11. In case the compensatory if afforestation program is shifted to far-off
	site / place from the project area, in addition to following the above
	suggestions, it is very important to carry out floral survey in the
	nearby forest habitat to selected and identify the dominant tree,
	shrub and woody creeper species to give preference for including
	these local plant species in the plantation list.
	מוטפר וטטמו אומות פארטובט ווו נווד אומותמוטוו ווטנ.

Table 7.2: Compensatory Afforestation – Mitigation to Loss of Habitat and Associated Biodiversity

7.4.2. Green Shelterbelt- Phyto-remediation

All the project related land preparation, excavation, construction, handling of waste dump, man power and material transportation, movements of vehicles and underground tunnelling are the major source of dust and gaseous emission (**ref Section 6.6.1, Chapter 6**). Many scientific studies have proved that, plant species can act as bio-filter agent to control air related pollution problems at population and species levels (Mansfield, 1976, Sanders 1976, Garsad and Rutter 1982, Scholz, 1981). The species morphology (tree size and shape, leaf structures and foliage area) influence the controlling of accumulation of dust and gaseous emissions (Martin and Barber 1971, Das 1981, Giridhar and Chaphekar 1983 and Chaphekar 1994). Therefore, with the understanding of the magnitude of air pollution that is likely to occur and the role of plant species as bio-filter agent, it is recommended to develop biological intervention: - **Green Shelterbelt- Phyto-remediation (Table 7.3),** in addition to general technical options in practice. The total budget need for **Green Shelterbelt – Phyto-remediation** is Rs. **12,00,000** /- the details of which are given in **Table 7.23**.

Mitigation theme	Action Plan
	Species Recommended
Minimise air pollution	1. Based the review of literature Central pollution control board (CPCB) identified many plant species to mitigate the air pollution (dust and Gaseous emission) related to different development project activities. From the CPCB list a total of 47 tree species have been selected, they were reported from the study area and suggested for the development of Green Shelter Belt (GSB) under Phyto-remediation to mitigate the air pollution due project construction activities
Maintenance of air quality	 Among the list, 23 species have been directly selected and recommended, since they have been listed in the CPCB list. The CPCB list includes predominately species of lower altitude and focused to address the pollution issue in and around the urban and industrial area. Hence, the choices of selection of more species were limited. Therefore, in order to diversify the species
Habitat for faunal species	 selection, some of the species come under the genus of CPCB suggested list were also included and resulted addition of 24 species (CPCB-2000- PROBES/75/1999-2000). 3. Among the seven ficus species reported in the study area only Ficus roxburghii and Ficus semicordata were matched with total eight ficus species suggested by CPCB to control the dust emission. Considering pollutant tolerance efficiency of the genus ficus, rest of five species reported in the study area (Ficus cuneata, Ficus cyrtophylla, Ficus heterophylla,
Climate Régulation	 Ficus hookeriana and Ficus lacor) were also included the final list. 4. Genus ficus being food sources of many frugivore birds and some threatened mammals like Arunachal Macaque and Himalayan Black Bear and other species Indian wild pig,

 Table 7.3: Green Shelterbelt – Phyto-remediation – Mitigation for Dust and Gaseous Emission,

 Habitat degradation and Biodiversity Loss

 Himalayan palm civet and possibly four species squirrels, giving preference is very important to support these dependent species (<i>Table 5.39</i>). 5. Similarly, four species of Bamboos and three species of Pines were also added in the list to improve the dust capturing efficiency of GSB in the study area (<i>Annexure 7.2</i>) Planting Locations
 The project area being dominated by undulating terrain, availability of space along the road side is very limited. Therefore. develop the green shelter belt giving first preference to the roads cutting across the villages, school, proposed office premises, labour colony and Health Centre etc. After construction of the new roads and widening of the existing roads, wherever adequate space is available need to be planted those selected species immediately. Green shelter belt should also be developed around the periphery of the all kind of waste dumping sites. Recommended to plant two rows of GSB following staggered techniques all the areas of Habitations while single row along the road sides.

7.4.3. Muck-dump management and Restoration

The total quantity of muck to be generated due to excavation and underground tunnel construction etc is estimated to be 165.65 Lac m³. This net quantity of muck is to be disposed into 12 muck dumping yards. This works out to be 117.35 Lac m³ and require land area of 113.70 Ha. Dust emission during muck handling, dump formation, runoff muck due to soil erosion, predominately impact on hydrological regime and water quality of both the Dri and Tangon rivers. Hence adopting some technical and biological (dump restoration) mitigations would curtail the possible impacts on aquatic ecosystem (**Ref Section 6.5.1.- Chapter 6 and Table 7.4**). The estimated cost for **Muck Dump Management and Restoration** is Rs. **33,00,000** /-, the breakup of which are given in **Table 7.23**.

Mitigation Theme	Action Plan
Minimise impact – aquatic	Technical aspects
ecosystem	 Though 12 sites were identified for muck-dump disposal, proper care must be taken that, the dumps should not disturb the flow of small streams into the rivers.
	2. Avoid setting up / formation of dump close to the river banks.
Additional Habitat created – muck-dump restoration	3. In case it isf not possible, a footwall must be developed / provided at the bottom of the external dump, to render stability to the dump and stop rain-wash runoff into the river system. The footwall must be provided with weep holes.
	4. Design dump dimensions (height and slope) to facilitate vegetation re-establishment, control sheet runoff and erosion, facilitate lateral and vertical wildlife movement, and to avoid unnecessary loss of adjacent vegetation.

Table 7.4: Muck-dump Management and Restoration to Minimise the Impact on River	Systems
---	---------

	 Muck dumps and backfill areas will be formed in lifts, each dump should not exceed a maximum height of 10-15m and a maximum slope angle must be <30°. Restoration Techniques
Enhance all the faunal biodiversity	6. Once the dump formation has been completed, the horizontal portions, i.e., top of dump and terraces will be levelled and scarified to reduce compaction and allow for effective revegetation. Once the dozing & levelling process has been completed a layer of topsoil will be spread over the levelled area. The depth of topsoil spread over the site will be maximized based on the amount available and area to be covered. 15 cm is a recommended minimum for grass establishment.
May provide habitat for some RET species	7. Collect seed of the native grass species reported from the study area and make grass pellets mixing with native soil and farmyard manure with water and sow the grass pellets on the dumps, just before the onset of monsoon.
	8. Planting of shrub on dump slopes will be done using native shrubs (Annexure 7.1) randomly in 10-15 m radius patches with 3-4 shrub patches/ha area, with 10 species per patch. In between shrub patches plant some fruiting tree species (Annexure 7.6) as well as more native species (Annexure 7.7) to create a more biodiversity friendly habitat. Greater emphasis could be given to faster growing native tree and shrub species for immediate stabilization.
	9. Development of shrub patches and tree planting need to be initiated just before the onset of monsoon to increase survival rate.

7.4.4. Technical and Managerial Interventions – Noise and Vibration

Increase in movements of vehicles, machineries, workshops, operation of DG sets, drilling and blasting for tunnelling and quarrying are the major sources of noise and ground vibration. Though preproject noise level showed to be within the limit of noise level for industrial and commercial area, the project area being / falling within the forest habitat and village area, the observed limits showed that it is on higher side for residential (rural) and forest (silence zone), during both day and night hours (**Ref Section 6.2.2 – Chapter 6**). Therefore, implementing the following technical and managerial skills would minimise the impacts of noise and ground vibration on selected faunal groups (**Table 7.5**).

Table 7.5. Technical and Managerial Interventions to minimise Noise and Vibration Impact on
selected Faunal Groups

Mitigation theme	Action Plan
Minimise noise and ground	1. Standard Mine Explosives (SME) in terms of measures should
vibration	be in practice to ensure controlled blasting – quarry activity.
	2. The suggested number of rows in a blast, must not be more than four to reduce fly rock and ground vibrations.
Day activity pattern and movement patterns of faunal	3. Attempts must be made to have one large blast with less frequency than to have several small blasts.

limits. 7. PU panels shall be used in vibrating screens to minimize noise generation – quarry areas. 8. Regulate the blasting activities during the day hours – twice in	species maintained	 Muffling of holes including the area to be blasted must be done All the heavy equipments in use must be provided with silencers and ergonomically designed air-conditioned cabins to
 9. Strictly avoid blasting during the night hours 10. Conduct periodic noise level measurements in the quarry and blasting area once in every six months 11. Possibly tree plantation / green belt development programme can be used as barriers for minimizing noise propagation, provided space availability. The list of plant species suggested can be used in plantation (Annexure 7.2). 	disappearance of faunal	 the extent possible to reduce the noise exposure levels. 6. Proper maintenance of machinery and transport vehicles is must to reduce the noise and keep the same within reasonable limits. 7. PU panels shall be used in vibrating screens to minimize noise generation – quarry areas. 8. Regulate the blasting activities during the day hours – twice in a day, - mid-forenoon and mid-afternoon 9. Strictly avoid blasting during the night hours 10. Conduct periodic noise level measurements in the quarry and blasting area once in every six months 11. Possibly tree plantation / green belt development programme can be used as barriers for minimizing noise propagation, provided space availability. The list of plant species suggested can be used in plantation (Annexure 7.2). 12. Possibly all the quarry pits should be re-filled and restored and

7.4.5. Technical and Regulatory Mechanism- Mitigation for Faunal Mortality

Construction activities involve heavy vehicle traffics as well as movement of equipments. The intensity and speed of vehicles specifically carrying manpower - materials are likely to be more compared to the movement of equipments. Therefore, following the on ground technical implication and regulatory mechanisms to restrict the speed and frequency of movement, would minimize the impacts on herpetofauna and ground dwelling mammals (**Ref Section 6.71 & Chapter 6 and Table 7.6.**). The estimated budget for the implementation of this action is Rs. **19,00,000** /- (**Table 7.23**).

Mitigation Theme	Action Plan
Population isolation minimised Reduces the rate of road mortality (herpetofauna and small mammals)	 Roadside trenches all along the roads to be newly constructed / developed for 50 km stretch. Connect these trenches through two, 1m diameter strong pipe at every 1 km intervals. These will act as under passes that would facilitate the amphibians, reptiles and small mammals to cross the roads. Possibly construct RCC culverts of 2m height and width (the culverts size may vary depending on the dimension of the stream), wherever streams are crossing the roads. These also will act as under passes that would facilitate, amphibians, reptiles and small mammals to cross the roads. Erect sign boards at regular intervals to control the speed limits and also at regular / frequent animal crossing points along the road planned for different project-based activities. Educate the drivers to maintain the speed limits and restrictions on blowing horns, while driving through the forest habitats to prevent bird collision and animal road mortality. Drivers should also be instructed that Right of Way is for the animals, so must stop and allow them to cross.

Table 7.6. Implementing Technical and Regulatory Mechanism to avoid Road Mortality of selected Faunal Groups

7.5 CONSERVATION PLAN – BIODIVERSITY

7.5.1. Species Group Conservation plan – Habitat / Niche Development / Enhancement

The project study area reported high species richness of butterfly, birds and moderate richness of herpetofauna, however, due to low abundance status three types of conservation plans are suggested for butterfly species, specific group of hole / cavity nesting birds and reptile species. The details of plan of actions for these are discussed in the following sections.

7.5.1.1. Development of Open Butterfly Parks

Table 7.7: Species Group Conservation – Development of Open Butterfly Parks Conservation Theme Action Plan

Conservation Theme	Action Plan
	 Some of project areas like residential colony, labour camp site, office premises, schools and health care centre can be selected for the development of open butterfly parks.
Additional habitat for butterfly species	2. Therefore, a total 4-5 such open butterfly parks can be developed to attract a portion of the 159 species of butterfly identified during biodiversity surveys.
Enhancement of	3. It is proposed to grow two types of host plants, food / nectar plants for adults and larval host plants for laying eggs and larval development in the surrounding areas of the above sites. In addition to host plants the area should also develop other ornamental and garden species.
butterfly diversity	 Based on the field observation and literature, a total of 23 adult host plants and 13 larval host plants have been identified (Annexure 7.3 & 7.4), for the development of butterfly parks.
Butterfly park can be recreational for local	 In these parks, signage for the most common species as well as the threatened species depicting basic information on size, life cycle, distribution and ecological importance of butterflies are to be placed.
kids, students and public	6. This park could serve as a valuable learning centre for students, the general public as well as interested professionals.
	The estimated cost of the five butterfly parks is Rs. 1,30,00,000 /-, the break up of which is given in Table 7.23 .

7.5.1.2. Reptile Park Habitat / Niche

Table 7.8. Development of Reptile Park/Niche- Facilitating / Enhancement of Microhabitat for Reptile Species

Conservation Theme	Experimental Action Plan
Additional Microhabitats created	 Creation of a "Reptile Park / Niche as part of the wildlife conservation plan would make a significant and more conspicuous contribution to herpetofaunal conservation. Two such parks with an area of 5 ha each (one in each Rive limb) would be adequate for this demonstration project.
Conservation of reptiles	2. The area selected/identified will be free and far from the human habitation (this could be area marked for waste dumps). Artificial burrows in varying sizes will be constructed using rock heaps and propagated with the seeds of local shrubs and grass species.

Awareness education –	3. A portion of waste wood generated during land clearing will be strategically incorporated within this area.
safe handling and saving of snake species	4. Waste rocks and boulders generated during the excavation will be separately dumped in the semi open area as rock heaps close to water sources and partly covered with waste soil/dump materials. 5 to 10 such rock heaps will be developed within the designated area.
	A walk-way will be developed through the area along with a perimeter fence to reduce trespassing.
	6. Snake awareness program should be undertaken to create awareness of the ecological role of snakes and how to avoid and or safely handle them when they are encountered within the human habitation
	The estimated cost of the two Reptile parks is Rs. 48,56,000 /-, the breakup of which is given in Table 7.23 .

7.5.1.3. Facilitating / Enhancing Nesting Niche

Table 7.9. Facilitating Nesting niche- Deploying Nest boxes for Hole / Cavity Nesting Avifauna

Conservation Theme	Action Plan
Provide additional nesting habitat and compensate for loss of tree with cavities – habitat loss	 Provisioning the nest boxes for hole and cavity nesting birds is an emerging and interesting conservation plan for avifauna community which would facilitate part of 230 avifauna reported during the biodiversity study from the study area, which included 32-hole nesting species. Installing different size nest boxes based on the size of birds would provide hole nesters, additional nesting habitat and space for breeding and nesting
	3. It is suggested initially to select two locations to install nest boxes in the forest patches around the staff colony and office premises. Each location can be installed with 200 such nest boxes (total 400 Boxes).
Conservation of specific group of avifauna	4. Nest boxes should be set up either before the breeding season sets in for birds, such that the birds have enough time to acclimatize and habituate themselves with the changes in the habitat and alternatives provided.
	The list of cavity / hole nesting birds of the study area and the size of boxes that needs to be made and provisioned are given in Annexure 7.5.
Knowledge creation on ecosystem services of bird	6. This nest box provisioning programme need to be monitored with the subject expert for two breeding seasons and based on the success rate (nest box occupancy rate), the same can be replicated in other areas.
community	7. The locals do involve in bird hunting, it is very important to conduct awareness program for the locals, migrant population to create awareness of the ecological role of birds and not to hunt and disturb the nest boxes.
	The estimated cost of the Facilitating Nest Niche Project is Rs. 26,57,000 /-, the breakup of which is given in Table 7.23 .

7.5.2. Habitat Rehabilitation and Restoration –Overall Biodiversity and possibly RET Species

The above suggested habitat restoration plan is focused to conserve overall biodiversity values of the project area and through that some of the RET species can benefit. The compensatory afforestation, will be implemented either in the close vicinity of the project area OR in some other place identified far off from the project site. Therefore, this habitat restoration program is targeted to restore the land areas of Muck dumps (91.79 ha), quarry pits (62.12ha) and 16 ha of labour camps area stated to be restored after construction phase. All the restoration plan and techniques are detailed in **table 7.10.** The estimated cost for the **Habitat Rehabilitation and Restoration – Overall Biodiversity and RET Species is Rs. 50,25,000/-,** the details of which are given in **table 7.23**.

Table 7.10. Habitat Rehabilitation and Restoration – Conservation of overall species diversity	
and some RET Species	

Conservation Theme	Action Plan
	1. It is suggested to restore some of the selected post construction phase project land use area of 168.91ha (muck dumps 91.79 ha, quarry pits 61.12ha and labour camp area 16.0 ha) to minimize the impact of project on overall biodiversity values and possibly some of the threatened fauna.
Restoration lead to gain of small extent of habitat lost	2. These areas need to be restored by planting 58 species of fruiting tree being food resources for frugivore birds and some mammal species (<i>Annexure 7.6</i>).
	3. In addition to some of the 14% of frugivore birds, some of the 59.8% of the insectivore species are likely to get additional habitat.
Improved habitat quality – food resources for frugivore birds and mammals and some threatened species	4. The list includes seven species of Ficus, that provides habitat and food to some mammals like squirrels, civets and threatened species like Arunachal Macaque and even Himalayan Black Bear, which prefer figs and also many other fleshy fruits (Annexure 7.6) So the plantation of native Ficus species at regular frequency will be good for overall habitat quality.
Threatened Arunachal	5. Some of the other native tree species suggested can also be included in restoration and plantation (<i>Annexure 7.7</i>)
Macaque and Himalayan Black Bear may get benefit	6. Whenever, the quarry pits get exhausted and muck dumps saturated, they should be restored immediately and not delaying until exhausting/completion of all the quarries and dumps
Enhance the species richness of all faunal groups	 formation. 7. The restoration and planting procedures should follow the suggestion given in Table 7.3 (Green-belt development) and Table 7.4 (Muck-dump restoration), with the engagement of Mine dump /Forest restoration expert of not less than 10 years of subject experience.
	8. The local tribes and plant taxonomist should be in the restoration team to identify and collect seeds/cuttings/saplings of the suggested plant species.

7.5.1.2)

7.5.3. Conservation of – RET Flora

The floral species richness is very high in Dibang valley and it supports diverse and unique species like orchids, pteridophytes, lichens and fungai, in addition to some highly threatened (Critically

endangered and endangered) and endemic species to Arunachal (See Box 6.1). Therefore, under the concept of conservation of RET flora it is suggested to develop Threatened Floral Conservation Plot – TFCP through creating Botanical Garden in the vicinity of the project area (Table 7.11). Development of eco-park or biodiversity preservation plot is one of the biodiversity conservation concepts implemented / taken up in many states. The total estimated cost for implementing this specific action on Threatened Floral Conservation Plot (TFCP) is Rs. 29,40,000/-, the details of which are given in Table 7.23.

Conservation theme	Action Plan
	1. A site of 5.0ha of comparatively less disturbed / partially degarded forest patch need to be identified, which will have used to develop threatened local native plant species plot.
Conservation of RET	2. It is suggested to carryout intensive survey in and around project area and collect some of the unique floral species (Orchids, lichens, and Pteridophytes) reported in the area (Annexure 7.8) to propagate within the TFCP.
species	3. The plant list suggested includes species of orchids, 33 species of Pteridophytes and species of lichens and therefore preferably maximize the list of species incorporated in the TFCP to make it as best practice
Threatened Gene pool restored	4. This conservation plan will be implemented in colobration with the State Forest Department to procure the forest plot as well as for survey and sustainable and appropriate means/ways of collection of species samples.
Eco-tourism support	5. The survey and development of TFCP will be implemented with help of subject specialist (person with the knowledge on orchids and Pteridophytes) experience in developing botanical garden
	6. The plot should be fenced and protected from human disturbance and provided with walk-way and signage describing information on basic ecology and conservation status and importance of the conservation significant species. This can be a part of eco- tourism development.

7.11. Conservation of RET Flora - Threatened Floral Conservation Plot (TFCP)	
	,	£

7.6. Aquatic Habitat and Biodiversity Conservation

7.6.1. Waste Debris Management System - Habitat Quality

The proposed construction of 50km new approach roads and 35km widening of existing roads is visualized to have impact on both the forest and riverine habitats in terms of loss of habitat and sediment deposition on river system respectively, and thereby indirectly affecting the faunal diversity of both. During the biodiversity survey, the ongoing road widening project along the stretch between Etalin and Yuron village witnessed very high road debris dumped on the river side, that had resulted in total loss of forest cover (**Plate 7.1**). Loss of forest habitat all along the 50 km road stretch is predicted as very high significant impact on both the forest and river systems. Therefore, to minimize such severe impact on the forest vegetation and as well as sedimentation in the river, the following possible **Road Waste Debris Management Actions** are suggested (**Table 7.12**). The estimated total cost for

implementing this action which is very crucial is Rs.**1,03,00,000** /-, the break of which are given in **Table 7.23**.

Mitigation theme	Actions
	1. Survey the entire stretch of the proposed construction of the new roads and road widening
Restore and minimize loss of forest habitat	 Identify areas having gentle, moderate and steep slope stretches on the river side slope and earmark for to dump road waste debris. Such areas can be available before and after the village areas.
	3. Possibly dump the waste debris generated on all those three slope category areas.
	4. Generally, the chances of availability of gentle slope areas is very rare, however in those area the dump can be spread till the edge of the river to make use of more debris and providing toe wall along the river edge to prevent the erosion.
Reduce the impact on	5. Both the gentle and medium slope areas should be terraced as

aquatic environment		shown in the Plate 7.2 , and restore the slope following the procedures suggested in Table 7.3 (Green-belt development) and Table 7.4 (Muck-dump restoration)
	6.	Wherever possible the moderately-steep slope area can be applied coir - mat technique (Plate 7.3) to restore and thereby recover possible extant of habitats lost in road construction activity and significantly reduce the magnitude of impacts on river ecology and associated biodiversity.
	7.	Whenever, considerable length of roads constructed and widened completed, the restoration can be initiated immediately and not to wait for the completion of the entire length of the road. Timely restored area will start regenerate and minimise the rain washed runoff debris into the river system.
	8.	Use list of plants suggested for Muck-Dump restoration plan listed in Annexure 7.6 and 7.7

7.6.2 Maintain the Stream Morphology

The network of both the rivers identified 16 major steams feeding water from the catchment area into the river system. Road cuttings across those streams may cause lot of change in the channel morphology, which may destroy spawning ground and obstruct migratory route of the fishes. Therefore, maintaining the stream morphology to mitigate the impact on stream migration of fish fauna is very important because the upstream migration is already stopped due to the construction of Dams across both the Dri and Tangon rivers. To prevent the impact of road-cutting through the construction of culverts/small dams across all the streams cutting across by the proposed road is a effective mitigation plan **Table 7.13**. The implementation and cost of this action should be included along with the road construction work.

Mitigation Theme	Action plan
Restore the stream morphology	 Identification of the major streams out of 16 stream (anon pani, ayo pani, shu pani, achali basti nala, makhri pani, chambo pani, noh nala, mayo pani, kabo pani, ru pani, emi pani, ayu pani, aha pani, aru pani, ayo pani, illi pani) existing in the study area likely to be cutting across by the proposed road
Mitigate road-cutting impact	 Suggested to construct culverts or small dam across those streams in adequate size / and or proportionate to stream width without disturbing the stream morphology
Ensure free migration of fish fauna	3. The following care should be given while constructing the culvert or bridges
	 Debris excavated on both the sides of the stream to construct concrete structure should not be dumped into the stream system
	5. The existing pebbles and boulders should not be removed from the stream bottom – which would disturb the micro habitat of stream and bathymetry which is the potential spawning habitat for many fish and benthic insects.

Table 7.13. Prevention of Road-cutting impact on Fish Migration

7.6.3. Impacts of Hazardous and Domestic Waste Disposal – River System

Hazardous waste and both domestic sewage and solid waste disposal and their impact on project is very common in any mega developmental project. In general, domestic sewage problems will be attended through construction of ETPs, while rest of the hazardous and solid waste require proper management especially in the project area located in the mid of forest and riverine habitat which are discussed below (**Table 7.14**). This action needs to be attended while construction the labour camps and colony.

Mitigation Theme	Action
	1. Select the waste disposal area of Hazardous and domestic waste far from the river, forest and human habitation and preferable flat area to avoid rain washed runoff
	2. The area of source of hazardous waste and garbage site should be fenced
Biological intervention implemented	3. Possibly around the fenced area develop green – shelter belt to prevent the dispersal of toxic odder come from the disposal site (Annexure 7.2)
	 The site of hazardous waste should be provided Garland Drainage and connected to filter soke pit so that the wastes disperse into river system stopped.
Adopt Gree Waste Mmanagement Syatem	5. These facilitations would prevent the land and river pollution soil and make all the waste disposal system become pollution free.
Minimise aquatic pollution	 All the Hazardous waste collected periodically and transported to the designated hazardous waste disposal site of State and CPCB
	7. Biodegradable Domestic waste can be converted into compost and used for restoration propose
Ensure clean working environment	8. Labours contractors and labours should be strictly warned for proper handling of waste.
	9. Educate and encourage the project people on Green-waste management through award system.

Table 7.14. Additional Care in Handling Hazardous and Domestic Waste – Plan for Forest and Riverine Habitat

7.7. CONSERVATION – PEOPLE'S BIODIVERSITY USE VALUES

The local villagers being tribal community depend on diverse forest based natural resource for their livelihood and life supporting systems. The social survey on impacts of project on natural resource showed that fodder and wild edible plant are expected to be impacted at low level, while bamboo collection at moderate level (**Table 6.9**). However, during construction period, the migrant work force is visualised to increase the impact levels from low to medium and from medium to high and also create local resource depletion. Hence under natural resource enhancement, it is recommended to develop **Grass Fodder Plot (cost Rs. 1**,00,00,000/-), **Bamboo Plantation (Rs.** 70,00,000/-), **and Wild Edible Plant Garden (cost Rs, 35**,00,000/-) (**Tables 7.15 & 7.23**) to minimize local resource loss and depletion.

7.7.1. Selected Natural Resource Enhancement

Table 7.15: Selected Natural Resource Enhancement- Grass Fodder, Bamboo and Wild Edible
Plants

Conservation Theme – Biodiversity Use Values	Action Plan	
	a. Grass Fodder Plot	
Secured grass fodder resource	1. The impact on grazing land is problem for the affected villagers, and some of them have to be re-located and therefore that group of villagers need to be consulted for livestock population (Mithun) and requirement of grass fodder.	
	2. Identification of palatable and highly nutritive and locally available grass species will be done with the help of the villagers.	
	3. Collect seeds of the selected grass species and also reported from the study area (<i>Appendix 1, Table A1-3</i>) and make grass pellets mixing with native soil and farmyard manure with water and sow the grass pellets on the dumps just before the onset of monsoon.	
Minimize grazing pressure – additional	b. Bamboo Plantation	
forest area	4. The project area is known for diverse bamboo species, hence in consultation with the affected villagers the type of species utilized maximum by the locals and also important species used in making different kinds of mats, caps, baskets, utensils and for craft works, need to be recorded,	
Enhanced selected and important natural resources	 Since village based bamboo plantation were observed during the biodiversity survey, all the techniques needed for the development of bamboo plantation will be taken care by the villagers 	
	c. Wild Edible Plants Garden	
	 The villagers use 19 species of edible plants collected from the nearby forest habitat and use different plant parts, which form as part of food resources (Table 5.53) 	
	 Again consultation of expert is needed, to identify the species, collect and cultivate in the area earmarked as – Wild Edible Plant Garden. 	
	Common/General Suggestions	
	 All the three action plans will be implemented and developed within the village Gaucher land (land allotted for grazing) or common / community land. 	
	 Size and number of plots / plantations / gardens to be developed will be decided in consultation with the newly formed Village Natural Resource Committee – VNRC as well as for the equitable sharing and sustainable use. 	

7.7.2. Life Quality Enhancement

Part of Social survey involved in assessing the people's perception on the proposed EIEP project. Even though People discussed about both negative and positive outcomes of the project, apart from the above discussed negative issue on loss and access to natural resource, they also visualized many positive impacts. However, they had an understanding on the need of the project for sustainable utilization of hydro power potential of Arunachal Pradesh, some of their main expectations include job opportunity in the project, additional income sources, better / improved road and transport, education and health care (**Table 6.2**).

People's perception study on the proposed project showed 70% of the villagers in support of project due to their expectation on many developments, related to infrastructure, education, job, health and overall enhancement of life quality. Therefore, it is a prerequisite for project proponent to fulfill the expectations of the locals for development of socially acceptable, economically feasible and ecologically sustainable project.

Providing job opportunity, creations of supplementary income generation sources, health care, improved education very well fall under CRS compliance. Therefore, this section suggests only sources of job in which the affected villagers can be accommodated rather than repeating the existing CSR activities (**Table 7.16**).

7.7.2.1. Job opportunity under CRS activities

Conservation Theme –	Action Plan
Biodiversity Use Values	
	1. Job Opportunity in project
Secured job for project affected people	The families who would lose their land and households should be given priority to provide job.
	The selected persons should be given short-term technical / vocational training based on their qualification and experience and provide them decent jobs like – Welder, Fitter, Plumber, Electrician, Driver and Office assistant, etc
Minimise the natural resource dependency	Unqualified persons (both men and women) can be engaged in other non- technical jobs like;
	2. Health Care Centre
	• Trained women folk can be given job in the health center as paramedical worker
	Housekeeping
Improve forest based	3. Project Guest house
natural resource	Housekeeping in the guesthouse / office, Gardener, Assistant in canteen, Security Guards
	4. Environment Division
	There are many programs suggested which are related to development of afforestation, habitat restoration, green shelter belt development that are likely to be under the control of the project environment division. Therefore, locals can be engaged in all the plantation works as Plant Nursery Workers after providing them necessary training on nursery technics with the help of an expert.

Table 7.16: Life Quality Enhancement – Suggested Job Opportunities under CRS Activities

7.7.2.2. Creations of supplementary income generation sources

Providing job to the member of all the affected families are not possible, hence it is recommended to support the following **supplementary income generation programmes** so that, the permanent income will bring down the locals' dependency on forest based natural resources. This is a kind of people's biodiversity conservation plan and will also improve their life quality of villagers (**Table 7.17**). The estimated cost of this particular action is Rs.90,00,000/-, the details of which are given in **Table 7.23**. This should be done with the help of the Eco-Development Committee to be formed.

Conservation Theme – Biodiversity use values	Action Plan
Self-employment	1. Cultivation of orange, pineapple and cardamom is a common practice among the locals. Therefore, villagers can be encouraged and facilitated to do large scale vegetable and fruit gardening and thereby increase their income sources.
Additional income Improved standard of	2. All the cultivated products can be procured by the project proponent to cater the needs in colonies, guest house, and mess of the labour camps etc.
living	3. Poultry, piggery, can be other sources of income generation, that can meet the protein requirements of the outsiders.
	4. Build capacities on improving skills in making arts and crafts and support the local craftsmen and women financially to prepare make and sell the local art and craft material
	5. The project proponent should also create and support marketing facilities.

7.7.2.3. Improved Health Care and Education

Providing health care and education are again common infrastructure development under CSR activities, hence this part discussed improved health programmes (**Table 7.18**).

Theme – Life Quality	Actions
	Health Care
Improved health	1. Development of health center and provide free medicines and quality treatment to the locals
	2. Operating mobile health care unit in the villages of the project area and special unit for child care are among the expected development of local villagers.
	In addition, the following health camps can be conducted regularly by involving specialist
	Organizing Health Camps
Increase Literacy Rate	Immunization
	AIDs Awareness programme

Table 7.18: Additional Facilitati	ion in Health Care and Education

Additional curriculum – Sports and Nature conservation	 T.B. control Eye Camps Family Planning Camps DOTs, TB eradication Program Education The exiting primary school at Etalin should be facilitated with needed infrastructure Development of secondary school at Etalin, with additional infrastructure suggested to improve the literacy rate of the locals
	 Talented students can be given scholarship for higher education or sponsorship to study in the nearby towns / cities.
	 Sports and games should be given importance and talented students/persons must be supported to participate in higher level sports meet.
	6. Nature education should be the part of special /additional curriculum in the school developed by the project proponent

7.7.3. People's Biodiversity Register (PBR) – Programme and Awareness Education

Hunting wildlife (major source of protein) and use of forest resource (NTFP and other bamboo, cane and wood materials) are community right. The locals hunt many species of birds (43 species) and mammals (30 species) for their consumption and to some extent for commercial purpose (**Annexure 5.13 & 5.14**). The attitude of commercial use of free resources for additional income is expected to increase many fold due to the influx of large number project manpower / people (outsiders). Hunting being a significant impact and will have direct influence on the population of faunal species, this serious issue should be tackled immediately through series of very strong and effective **awareness programs** for the targeted groups starting with the initiation of preparation of **People's Biodiversity Register – PBR- Programme (Table 7.19**), which will aid in documenting all the local biodiversity and the threats faced.

7.7.3.1 People's Biodiversity Register – PBR- Programme

Table 7.19: Initiation of Preparation of People's Biodiversity Register

Conservation Theme – Biodiversity Use Values	Action Plan
Traditional knowledge on biodiversity use values –	The local villagers being tribal communities depend on forest for their livelihood they are the storehouse of traditional knowledge on local biodiversity, which has led to the long-term survival of their generations and the ecosystem they live. But in many places this knowledge even though exists, it is not known. Hence, it is important to document the knowledge on the traditional use of floral and fauna species. This would also help in understanding the past and present overall biodiversity

preserved	status of the project area.
Baseline data – long term monitoring	1. Recommended to initiate project on Peoples' Biodiversity Register in all the villages falling within the boundary of the study area and other villages within the radius of 5 km from the boundary of the study area to prepare the PBR by involving a reputed local NGO(s).
	 This programme can be initiated in consultation with the State Forest department and State Biodiversity Board (SBB) and the data can be shared with the SBB.
	3. The outcome can be used as baseline status for long-term monitoring of biodiversity of the project area and develop sustainable plans for its utilization through VNRC & Eco-development Committees (EDCs).
	The total cost for implementation of this action plan is Rs. 25,00,000/- (Table 7.23)

7.7.3.2 Biodiversity Conservation - Awareness Education

7.20. Awareness Education – Biodiversity conservation and Sustainable Resource Use – Targeted Groups

Conservation Theme – Biodiversity Use Values	Action Plan
Conservation education	Systematic and well planned, series of awareness education camps should be initiated targeting different groups of stakeholders starting from school children, youths, elders of local villages, hunters, migrant project people. This can be done by involving a reputed local NGO with good experience in awareness and education. The themes need to be focused are given below'
	Local Villagers
Sustainable resource use	 sustainable use of the natural resources
	Non-destructive means of NTFP collection / extraction
	 Regularize the Jhum agriculture through increasing the agriculture productivities by practicing organic forming.
	Hunter Groups
Preventing illegal activities	 Possibly regularize periodic / controlled hunting – hunter group
	 Strictly avoiding hunting for commercial use within the community.
	• Community based controlled mechanism needs to be developed to stop the commercial hunting.
	 Education towards avoiding of hunting of Scheduled / Red Listed animals and birds.
	Migrant Project People
	Illegal collection of natural resource

 Avoid cutting of bamboo and trees for timber and fuel wood
• Not involve in hunting and poaching of wild animals
Overall awareness on importance of biodiversity conservation and ecosystem service.
The estimated budget for the implementation of this act is Rs.20,00,000/- (Table 7.23)

7.7.4. Exploitation of Rare Resource

Paris polyphylla- the rare wild tuber or rhizome found to be overexploited every year by the village youth to make quick and more money. Extensive collection of cane with the help of labour force from Nepal was observed during the field survey. Exploitation without knowing the status of the resource, its potential and productivity, would lead to over exploitation and diminishing / decrease of the resource. Hence, the following actions suggested would help in sustainable use of such rare and highly commercial resources (**Table 7.21**). The estimated cost for this particular action is **Rs.36,00,000/-**(**Table 7.23**).

Conservation Theme – Biodiversity Use Values	Action Plan
Sustainable use of rare	 Locals should be made aware of periodic collection of both the resources, viz., once in a four years (Cane) and two years (Paris polyphylla) with the understanding of their productive potential.
resource	 It is suggested to take up research and monitoring program to understand the distribution, threats and resource potential of this rare Paris polyphylla with the involvement of local students and derive regulated sustainable management plan.
Research and knowledge gaining	3. Measures need to be devised for cultivation or ex-situ re-generation of Paris polyphylla, through research and monitoring. So as to encourage its cultivation.

7.7.5. Issues related to Migrants on Biodiversity and Culture Values

Illegal Resource Collection and Hunting

One of the impacts of project on natural resource, is its depletion, and conflicts due to sudden increase of 150% of local population due to migrant population, i.e, project associated work force. Their illegal activities in the form of collections forest resources like; wood and bamboo, poaching and hunting pressure is expected to increase many folds. Hence, the above suggested awareness education programme, very strict enforcement of anti-poaching mechanism, can only help in stopping the hunting associated impacts (**Table 7.22**).

Cultural Issues

Other impacts related to migrant population are, influence on cultural values, women safety, unnecessary involvement in tribal's matters, illegal stay, etc. Therefore, these issues need to be monitored and settled in diplomatically. The ways of handling the issues are discussed in **Table 7.22**.

	 The outside labour force and labour contractors should be made aware of collection of forest resources and hunting is illegal as per the Wildlife and Forest Protection act.
	2. There should be legal obligation between the contractors and project proponent.
a. Illegal Resource Collection	3. Anti- poaching squad should be formed to strictly monitor the illegal activities, frequently.
and Hunting	 Representative of village heads, contractors, project proponent and field staff of forest department are to be part of the anti poaching squad.
	5. Following initial warning, strict actions should be taken to completely stop any kind of illegal activities
	Total cost for implementing this action is Rs.12,00,000/- (Table 7.23) and will be done through VNRC & EDC with NGO involvement.
	Mass awareness camps for Women Safety
	No interference in Tribal matters by project proponents
	 Women safety can be ensured by district administrators & Project proponent
	Inner Line Permit should be properly issued.
	 Influx of population should be checked and settlement of laborers should be checked.
b. Cultural Issues	 Contractual labors should not be allowed to stay beyond their contract period.
	Cultural issues being sensitive, well informed stakeholders Cultural Issue Committee – CIC should be formed and settled through the local legal forum among the village heads and project proponent heads – Public Relation Officer. Judiciary person can be part of this Cultural Issue Committee – CIC. This should be linked with EDC and the suggested actions need be strictly implemented for which the estimated cost is Rs.13,00,000 /- (Table 7.23).

Table 7.22: Measure to Address the Migrant Issues: Hunting and Cultural Values

7.8. RESEARCH AND MONITORING OF KEY MAMMAL SPECIES MOVEMENTS

Spatial distribution of two ecologically sensitive areas, DWLS and MWLS sanctuaries, were found to be strategically located on the hill ranges and far away from the project sites. Further the movement of key faunal species i.e., Tiger was evaluated, with three studies using camera traps (present survey in the project area; February 2018 – July 2018 and just completed long term study in Dibang Wildlife Sanctuary: 2015 -2017 and ongoing study at Mehao WLS - October 2017 to May 2018 - completed eight months), along with habitat potential of the Etalin HEP-Project study area. The outcome of these studies, did not confim the possibility of occurrence of tiger in the Dri or Tangon project areas. The total estimated cost for carrying out various **Research and Monitoring** projects is **Rs.4,00,00,000/-** (**Table 7.23**).

- Nevertheless, continuous monitoring of movements of key mammalian fauna covering 10km radius from the project study area is very important.
- A competent research organization needs to be engaged for this monitoring research in collaboration with the State Forest Department.

Other Projects related to Ecology

- Monitoring of Aquatic habitat and species of Benthic Invertebrates and Fishes, and other aquatic species along Dri, Trangon and Dibang (below confluence 3-5 km stretch) for five years.
- Monitoring of Bird fauna in and around the Etalin HEP Study Area for minimum of three years covering different seasons is recommended to get a better understanding of their status and conservation problems.
- Ecological survey of the Orchids, Pteridophytes, Lichens, and other lower plants for minimum two years, is of prime importance as to know their status, distribution and conservation problems.
- Status survey of *Paris polyphylla* an overexploited, patchily distributed, economically important plant species in and around the Project study area.
- Monitoring of small mammals using camera traps in the Etalin HEP Study Area for minimum of two years is also another important aspect of biodiversity.
- Two years study on the resource use, availability and means of extraction by local communities needs to be undertaken to get a better understanding of their resource needs and deriving management and sustainable use norms.

All these research and monitoring studies should be for minimum of 3 years to five years. This would help to develop habitat/site, species /species group, and natural resource specific monitoring protocol which is very important for the long-term conservation of the biodiversity in such a mega developmental project in a biodiversity hotspot.

			Yearly Brea	Yearly Break up - Five Years	S		Sub-Activity	Main Activity
S.No	Activities / Actions	1	2	3	4	5	Total	Total
7.4.1	Compensatory afforestation *							
A	Nursery Development & Maintenance 2 no.							* A total of 26.23 Cr
В	Seed Collection							nas peen puogeted as cost of
ပ	Nursery Water Supply & maintenance							afforestation as part of the
D	Plantation & Maintenance							Compensatory Afforestation
ш	Site Preparation - Afforestation Plot (including Protection)							
ш	Consultant - Nursery and Plantation Techniques (Training & Guidance) + (travel)							une Externer (1.2.2.). Su this activity may be covered under EMP ensuring that all the subactivities are carriedout
7.4.2	Green shelterbelt- Phyto remediation – Dust and Gaseous emission							12,00,000
Α	Plantation & Maintenance - include protection)	8,00,000	1,00,000	1,00,000	1,00,000	1,00,000	12,00,000	
7.4.3	Muck-dump management and Restoration *							* A total of 114.73
۷	Plantation & Maintenance (include Protection)							inas been budgeted as cost relocation and rehabilitation of excavated material under the EMP (7.5). So this activity may be covered under EMP.
7.4.4	Technical and Managerial Interventions – Noise and Vibration *							* A total of 50 Lakhs has been budgeted as cost of Noise Mitigation and Managent under the EMP (1.4.1.9). So this activity may be covered under EMP.
7.4.5	Technical and Regulatory Mechanism –							

Table 7. 23: Budget Layout for the Implementation of the Biodiversity Management and Wildlife Conservation Plan of the Etalin HEP Study Area

Wildlife Conservation Plan

ETALIN HEP

			Yearly Bre	Yearly Break up - Five Years	rs		Sub-Activity	Main Activity
01.6	Activities / Actions	-	2	3	4	5	Total	Total
A	Road Mortality of wildlife							19,00,000
A	Awareness to Drivers & others	2,00,000					2,00,000	
В	Preparation and Installing Signages – Awareness	15,00,000	50,000	50,000	50,000	50,000	17,00,000	
7.5.1	Species Group conservation plan – Habitat/ Niche development.							
7.5.1.1	Butterfly Parks - 5 No (1-2 ha each)							1,30,00,000
А	Consultant - Guidance & Training in Developing the parks & trainings support staff (6 months)	6,00,000					6,00,000	
В	Head Gardener - 2 nos. (Care & Maintenance)	2,40,000	2,40,000	2,40,000	2,40,000	2,40,000	12,00,000	
ပ	Assistant Gardner - 10 nos. (Help Head Gardener	8,40,000	8,40,000	8,40,000	8,40,000	8,40,000	42,00,000	
D	Development of Park (Garden including Fencing + plantation)	50,00,000	5,00,000	5,00,000	5,00,000	5,00,000	70,00,000	
7.5.1.2	Reptile Park – Habitat / Niche- 2 Nos. 5 ha each							48,56,000
٩	Consultant - Expertise in Herpetofauna	4,00,000					4,00,000	
В	Setting up parks including protection + artificial burrows + seed sowing grass, herb, runners, shrubs	30,00,000	2,00,000	2,00,000	2,00,000	2,00,000	38,00,000	
ပ	Setting up walk way (To be planned & laid before dumping rocks and boulders)	2,00,000	25,000	25,000	25,000	25,000	3,00,000	
D	Incorporation of Waste wood	2,00,000					2,00,000	
ш	Security Guard – Stop Trespassing	78,000	78,000				1,56,000	
7.5.1.3	Facilitating & Enhancing Nesting Niche							
A	Consultant -Technical inputs, Guidance, Training on Cavity Nesting Bird identification, installation & monitoring of Nest Box							* A total of 50 Lakhs has been budgeted as cost of habitat improvement for
В	Making of Nest Boxes Different Size (total 400 boxes)							avifauna under the EMP (1.3.2.2). So
ပ	Installation & Maintenance							this activity may be
D	Monitoring of Nest Box - Biologist							ensuring that all the

Wildlife Conservation Plan

ETALIN HEP

C N C			Yearly Bre	Yearly Break up - Five Years	S		Sub-Activity	Main Activity
01.0	Activities / Actions	-	2	3	4	5	Total	Total
ш	Field Assistants - 2							subactivities are carriedout
7.5.2	Habitat Rehabilitation and Restoration –RET Species							50,25,000
Α	Mine Dump Restoration Expert (including travel) @ Rs.1.2 lac per month for 4 months	6,00,000	2,00,000				8,00,000	
В	Setting up the Mine Dumps & other post construction phase project land use area & Preparation for Plantation	12,00,000	1,00,000	1,00,000	1,00,000	1,00,000	16,00,000	
ပ	Nursery & Plantation (Planting and Maintenance including watering)	12,00,000	2,00,000	2,00,000	2,00,000	2,00,000	20,00,000	
D	Labour charges for maintenance - 5 persons 0n daily wage basis	4,00,000	75,000	75,000	75,000		6,25,000	
7.5.3	Threatened Floral Conservation Plot- TFCP (2-3 ha)							29,40,000
A	Collection of Seeds	1,50,000	50,000	50,000			2,50,000	
В	Nursery Maintenance (including labour)	2,00,000	50,000				2,50,000	
ပ	Site preparation + Planting + maintenance (watering and de-weeding)	7,50,000	1,00,000	50,000	50,000	50,000	10,00,000	
D	Head Gardener - 1 nos. (Care & Maintenance)	1,20,000	1,20,000	1,20,000	1,20,000	1,20,000	6,00,000	
ш	Assistant Gardner - 2 nos (Help Head Gardener	1,68,000	1,68,000	1,68,000	1,68,000	1,68,000	8,40,000	
7.6	Aquatic Habitat and Biodiversity Conservation – New Roads & Existing Road Expansion							1,03,00,000
Α	Waste Debris Management System – Habitat Quality - Restoration	65,00,000	15,00,000				80,00,000	
В	Nursery Development & Maintenance	8,00,000					8,00,000	
ပ	Plantation & Maintenance	12,00,000	2,00,000	1,00,000			15,00,000	
7.7	Natural resource and life quality enhancement							2,05,00,000
7.7.1	Grass and leaf fodder plots for Mithun							
۷	To be done on need basis - through VNRC & EDC (Seed Money) lump Sum (all inclusive)	75,00,000	25,00,000				1,00,00,000	

Plan
ation
nsen
S
life
Nild

ETALIN HEP

			Yearly Bre	Yearly Break up - Five Years	ars		Sub-Activity	Main Activity
0N.C	Activities / Actions	-	2	3	4	5	Total	Total
7.7.1	Bamboo plantation							
В	To be done on need basis - through VNRC & EDC (Seed Money) lump Sum (all inclusive)	50,00,000	20,00,000				70,00,000	
7.7.1	Wild edible plant garden							
ပ	One in each village - to be done - through VNRC & EDC (Seed Money) lump Sum (all inclusive)	25,00,000	10,00,000				35,00,000	
7.7.2	Life Quality Enhancement *							
7.7.2.1	Providing job opportunities (involved in jobs to be created in the project and also in the implementation of BMCP							
7.7.2.2	Create Income generation sources /options							
Α	Capacity building in making crafts - improve skills (To be done under EDC program)							* This activity may be taken as per the project's R& R Plan
В	Seed money as Loan for setting up / improving business, developing fruit orchards (Under Purview of EDC) – part of livelihood enhancement							ensuring all the subactivities are covered
7.7.2.3	Improved Health Care & Education- part of CSR							
A	Improved Health Care							
В	Improved education facilities -							
ပ	Encourage sports and games -							
7.7.3	Peoples' Biodiversity Register & Awareness Education Programs							40,00,000
7.7.3.1	People biodiversity Register							
A	NGO to be involved (take assistance / help of VNRC)	25,00,000					25,00,000	
7.7.3.2	Awareness - Sustainable Resource Use & Regulation on Hunting of Wild animals							
A	NGO to be involved - Developing Protocol & Awareness Program (assistance of VNRC & EDC)	10,00,000	5,00,000				15,00,000	

			Yearly Brea	Yearly Break up - Five Years	rs		Sub-Activity	Main Activity
S.N0	Activities / Actions	•	2	3	4	5	Total	Total
7.7.4	Sustainable Use of Rare Resource - Paris polyphylla and Cane							36,00,000
A	Awareness on sustainable use	4,00,000	1,00,000	1,00,000			6,00,000	
В	Understand the distribution, threats and resource potential of Paris polyphylla and Cane	6,00,000	6,00,000	3,00,000			15,00,000	
ပ	Experiment – growing <i>P. polyphylla in ex-situ village land including management</i>	10,00,000	5,00,000				15,00,000	
7.7.5	Issues related to Migrants on Biodiversity and Culture Values							25,00,000
A	Anti-poaching Mechanism							
	To be done through VNRC & EDC & NGO							
	Signages on effects of hunting and significance of conserving biodiversity	12,00,000					12,00,000	
B	Stakeholders Interaction – Cultural Values - CIC & EDC	3,00,000	3,00,000	2,00,000	2,00,000	3,00,000	13,00,000	
7.8	ESA- Research and Monitoring	1,60,00,000	60,00,000	60,00,000	60,00,000	60,00,000	4,00,00,000	4,00,00,000
Total		6,43,46,000	1,82,96,000	94,18,000	88,68,000	88,93,000	10,98,21,000	10,98,21,000

References

- Ahmed, M.F. & A. Das. (2010) Tortoises and Turtles of Northeast India: Saving them from Extinction! Survey, Assessment of Present Status and Conservation of Tortoises and Freshwater Turtles in Northeast India. *Technical Report, Aaranyak*, Guwahati, India. 86 pp.
- Aiyadurai, A. (2014.) Traditional ecological knowledge of the Idu Mishmi's, 2nd Rufford small grant report; Accessed 31st July 2018
- Ali, S. and Ripley, S.D. (1987.) *Compact Edition of the Handbook of the Birds of India and Pakistan*. Oxford University Press, New Delhi.
- Allen, D.J., Molur, S., Daniel, B.A. (Compilers) (2010) The status and distribution of Freshwater Biodiversity in the Eastern Himalaya. Cambridge, UK and Gland, Switzerland: IUCN, and Coimbatore, India: Zoo Outreach Organisation.
- Allison, A., and Englund, R. (2005), Terrestrial animals and aquatic vertebrates, *Biodiversity* Assessment of Tropical Island Ecosystems. 49-70 p.
- Anderson, R. C. (2009). Do dragonflies migrate across the western Indian Ocean? Journal of Tropical Ecology, **25(4)**, 347-358.
- Armantrout, N. M., (1990) Aquatic habitat inventory. Bureau of Land Management, Eugene district, Oregon, USA.
- Asian Development Bank (ADB), 2007. *Hydropower Development in India: a sector assessment.* Publication Stock No. 031607
- Askins, R. A. and Philbrick, M. J. (1987.) Effects of changes in regional forest abundance on the decline and recovery of a forest bird community. Wilson Bulletin. **99:**7–21.
- Athreya, R. (2006.) A new species of *Liocichla* (Aves: Timaliidae) from Eaglenest Wildlife Sanctuary, Arunachal Pradesh, India. *Indian Birds.* **2(4):** 82–94.
- Baishya, A.K., Haque, S., Bora, P.J. and Kalita, N. (2001) Flora of Arunachal Pradesh an overview, *Arunachal Forest News* **19 (1&2)**: 1-25.
- Barlow, J., I. S. Araujo, W. L. Overal, T. A. Gardner, F. S. Mendes, I. R. Lake and C. A. Peres (2008) Diversity and composition of fruit-feeding butterflies in tropical Eucalyptus plantations. Biodivers. Conserv. 17: 1089– 1104.
- Baruah, D., Hazarika, L. P., Bakalial, B., Borah, S., Dutta, R., & Biswas, S. P. (2012). A grave danger for the Ganges dolphin (Platanista gangetica Roxburgh) in the Subansiri River due to a large hydroelectric project. *The Environmentalist*, **32(1)**: 85-90.
- Baruah, T.K. 1960. The Idu Mishmis, Itanagar: Directorate of Research.
- Bender D. J., Contreras T.A. and Fahrig L. (1998), Habitat loss and population decline: a meta-analysis of the patch size effect. Ecology **79**: 517-533.
- Beniwal, B. S. and Haridasan, K., (1992) Natural distribution and status of regeneration of gymnosperm in Arunachal Pradesh. *Indian For.*, **118**: 96–101.
- Bergman, K., L. Ask, J. Askling, H. Ignell, H. Wahlman and P. Milberg (2008) Importance of boreal grasslands in Sweden for butterfly diversity and effects of local and landscape habitat factors. Biodivers. Conserv. **17:** 139–153.

- Bernard, H. R. (2017). Research methods in anthropology: Qualitative and quantitative approaches. Rowman & Littlefield.
- Bhattacharjee, T. K. (1983). The Idu Mishmis of Dri valley. Shillong: Directorate of Research
- Bibby, C. (2002.) *Why conserve bird biodiversity?* In: Norris, & D. Pain eds. Conserving bird biodiversity. General principles and their application. Cambridge University Press. Pp. 20-33.
- Bibby, C. J., Burgers, N. D. and David, A. H. (1992) Bird census techniques. Academic Press.
- Biodiversity of Arunachal Pradesh [http://arpenvis.org.in/Biodiversity1.htm] Accessed on 29th June 2018.
- Birand, A. and Pawar, S. (2004.) An ornithological survey in north-eastIndia. Forktail 20: 15–24
- Branco, P., Segurado, P., Santos, J.M. and Ferreira, M.T., (2014.) *Prioritizing barrier removal to improve functional connectivity of rivers.* Journal of Applied Ecology, **51(5)**, pp.1197-1206.
- Buddle, C. M., Spence, J. R., & Langor, D. W. (2000). Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography, **23(4)**, 424-436.
- Bunn, S.E. and Arthington, A.H., (2002.) *Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity.* Environmental management, **30(4)**, pp.492-507.
- Calabrese, L., (2005.) The use and methods of making a herbarium/plant specimens. A Herb Society of America Guide. *The Herb Society of America*. p.6.
- Census (2011), Primary Census Abstracts, Registrar General of India, Ministry of Home Affairs, Government of India, available at: http://www.censusindia.gov.in/2011census/PCA/pca_highlights/pe_data.html, Accessed on 21 June 2018.
- Champion, S. H., & Seth, S. K. (1968). A revised survey of the forest types of India. A revised survey of the forest types of India.
- Chandra, K., Gupta, D., Gopi, K.C., Tripathy, B., Kumar, V., Mandal, K., Kumar, H. and Saini, J. (2018) Faunal diversity of Indian Himalaya: An overview. In: Faunal Diversity of Indian Himalaya. 872p. (Published by Zool. Surv. India, Kolkata).
- Chandra, K., K.C. Gopi, D.V. Rao, Valarmathi, and J.R.B. Alfred (2017). *International Journal of Fisheries and Aquatic Studies* **4(2)**: 337-346.
- Chaphekar. S. B. (1994). Plantation Strategies for Eco-Management of a Thermal Power Plant. Pp:873-878. In: Agroforestry systems for degraded lands. (eds). Punjab Singh, P. S. Pathak & M. M. Rey. Vol: 2.
- Chatterjee, S., Saikia, A., Dutta, P., Ghosh, D., Pangging, G., and Goswami, A.K. (2006) Biodiversity Significance of Northeast India Background Paper No.**13**. WWF, India.
- Chaudhuri, S. K. (2008). Plight of the idus: notes on shamanism among the Idu Mishmis of Arunachal Pradesh, India. EBHR, 84.
- Chavhan, A. (2017). Community structure and monthly dynamics of zooplankton in high altitude rice fish system in Eastern Himalayan region of India. *International J. of Life Sciences*, **5(3)**, 362-378.

- Choudhury, A. (2006). The status of endangered species in northeast India. *J. Bombay nat. Hist. Soc.* **103(2/3)**, 157.
- Choudhury, A. (2003). Choudhury, A., 2003. The Mammals of Arunachal Pradesh. Regency Publications. Pp.149
- Choudhury, A.U. (2006.) *A Pocket Guide to the Birds of ArunachalPradesh*. Gibbon Books and The Rhino Foundation for Nature in NE India. Pp. 109
- Chovanec A, Raab R. (1997.) Dragonflies (Odonata, Insecta) and the ecological status of newly created wetlands—examples for long-term bioindication programmes. Limnologica **27(3–4)**: 381–392.
- Chovanec, A. (2000). Dragonflies (Insecta: Odonata) as indicators of the ecological integrity of aquatic systems–a new assessment approach. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, **27(2)**, 887-890.
- Chowdhery, H. J. (1999) Arunachal Pradesh. In Floristic Diversity and Conservation Strategies in India. Vol. II (V. Mudgal & P. K. Hajra Ed.), Botanical Survey of India, Calcutta. 547-614.
- Chwala, E., & Waringer, J. (1996). Association patterns and habitat selection of dragonflies (Insecta: Odonata) at different types of Danubian backwaters at Vienna, Austria. Large Rivers, 45-60.
- CIA & CCS. 2016. Cumulative Impact Assessment Study and Carrying Capacity Study of Dibang River Nasin in Arunachal Pradesh. – Development of Hydroelectric power projects- Approved Recommendations. MoEF & CC – correspondence. 25p.
- CISMHE. (2015). *Biodiversity Profile of Etalin Hydro-electric Project, Arunachal Pradesh*. Centre for Interdisciplinary Studies of Mountain & Hill Environment (CISMHE), University of Delhi, Delhi. 75p.
- Coddington, J. A., & Levi, H. W. (1991). Systematics and evolution of spiders (Araneae). *Annual review* of ecology and systematics, **22(1)**, 565-592.
- Cody, M. L. (1981.) Habitat selection in birds: the roles of vegetation structure, competitors, and productivity. BioScience. **31:**107–113.
- Collen, B., F. Whitton, E. E. Dyer, J. E. M. Baillie, N. Cumberlidge, W. R. T. Darwall, C. Pollock, N. I. Richman, A.-M. Soulsby & M. Böhm, (2014) Global patterns of freshwater species diversity, threat and endemism. *Global Ecology and Biogeography* 23(1):40-51.
- Colwell, R.K. (2013.) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User's Guide and application available at: http://purl.oclc.org/estimates.
- Corbet PS. (1993.) Are Odonata useful as bioindicators? Libellula 12: 91–102.
- Covich, A. P., Palmer, M. A., & Crowl, T. A. (1999) The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. *BioScience*, **49(2)**: 119-127.
- CPCB-2000. Guidelines For Developing Greenbelt PROBES/75/1999-2000, ENVIS Centre CPGB (<u>WWW.cpcbenvis.nic.in</u>).
- Csiki, S. and Rhoads, B.L., (2010.) *Hydraulic and geomorphological effects of run-of-river dams. Progress in Physical Geography*, **34(6)**, pp.755-780.

- Cuddeback Digital C (modular) and E model user manual" www.cuddeback.com. Accessed 2018-07-07.
- Curtis, T. and Cotton, G. (1956.) *Plant Ecology Workbook: Laboratory Field Reference Manual.* Burgess publishing Co., Minnesota. 193 p.
- Curtis, T. and McIntosh, P. (1950). The interrelations of certain analytical and synthetic phytosociological characters. *Ecology*. **31**: 434-455.
- Das, B. K. and Kar. D. (2016) *Diversity of zooplanktons in river Siang of Arunachal Pradesh, India. Fish* & Ocean Opj. **1(2):** 1-5.
- Das, G.N., Gayen, S., Ali, M., Jaiswal, R.K., Lenin, E.A. and Chandra, K. (2018) Insecta: Lepidoptera (Butterflies). In: Faunal diversity of Indian Himalaya. 611-650 (Published by the Director, Zoological Survey of India, Kolkata).
- Das, J. N., & Biswas, S. P. (2008). A handbook of ornamental fishes of the Brahmaputra basin. EBH Publishers (India), Eastern Book House, Guwahati.
- Das, T. M. (1981). Plants and pollution. Presidential addresses. Ind. Soi. Ong. Meeting, B. H. U. Varanasi.
- Department of Forests & Environment, Government of Arunachal Pradesh [http://www.arunachalpradesh.gov.in/bio-diversity] Accessed on 29th June 2018.
- Dias, M. S., Tedesco, P. A., Hugueny, B., Jézéquel, C., Beauchard, O., Brosse, S., & Oberdorff, T. (2017) Anthropogenic stressors and riverine fish extinctions. *Ecological Indicators*, **79**: 37-46.
- Districts of Arunachal Pradesh [https://en.wikipedia.org/wiki/List_of_districts_of_Arunachal_Pradesh], Accessed on 29th June 2018.
- Dodgson, J.S., Spackman, M., Pearman, A. and Phillips, L.D., (2009). Multi-criteria analysis: a manual.
- Dudgeon, D. (2008) Tropical stream ecology (eds.). Academic Press. 316 pp.
- Dynesius, M. and Nilsson, C. (1994) Fragmentation and flow regulation of river systems in the northern third of the world *Science* **266**: 753–762.
- ED-World Bank. (1998). Environmental assessment of Mining Project. In. *Environmental Assessment Source Book* UPDATE. 9 :1-12.
- EHEPCL. (2013). Etalin hydro electric power Company Ltd. (EHEPCL) Detailed project report (FINAL), volume-I Main report- Part-B, SNC –LAVALIN Engineering India. 441p.
- EIA EHEPCL (2015). Environmental Impact assessment Report Etalin H.E. Project (3097 MW). R.S. Envirolink Techonologies Pvt. Ltd. Gurgaon.
- Ellenberg, H. and Müller-Dombois, D. (1967.) A key to Raunkiaer plant life forms with revised subdivisions. Berichte des geobotanischen Institutes der ETH, Stiftung Rubel, **37:** 56-73.
- Everett, B.S., Landau, S. and Leese, M. (2001), Cluster Analysis, Fourth edition, Arnold.
- Fantin-Cruz, I., Pedrollo, O., Girard, P., Zeilhofer, P., Hamilton, S. K. (2015). Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a tributary to the Pantanal floodplain, Brazil. *Journal of Hydrology*. **531**: 810-820

- Finnamore, A. T. (1996.) The advantages of using arthropods in ecosystem management. Biological Survey of Canada (Terrestrial Arthropods) for Canadian Museum of Nature and Entomological Society of Canada, Ottawa.
- Fisser, II.G. and Ries, R.E. (1975). Pre-disturbance ecological studies improve and define potential for surface mine reclamation. National coal Association/Bituminous Coast Research Conference and Expo II, Liwsville K.V.: Vol. 1.1: 128-139.
- Fleishman, E. and Mac Nally, R. (2006.) Patterns of spatial autocorrelation of assemblages of birds, floristics, physiognomy, and primary productivity in the central Great Basin, USA. Diversity and Distributions. **12**: 236-243.
- Forest Survey of India, State of Forest Report (1999,) Ministry of Environment and Forests, Government of India, Dehra Dun.
- Freemark, K. and Collins B. (1992.) Landscape ecology of birds breeding in temperate forest fragments. Pp: 443– 454. In J. M. Hagan III, and D.W. Johnston, editors. Ecology and conservation of neotropical migrant landbirds. Smithsonian Institution Press, Washington, D.C., USA.
- Garam, G B (2013): "Mithun Needs Love, Care and Respect," Arunachal Times, 9 February.
- Garsad, S.G. and Rutter, A. J. (1982). Relative performance of Conifer population in various tests for sensitivity to S and the implications for selecting trees for planting in polluted areas. *New Phytol*. 93:349-367.
- Gibb, H., and D. F. Hochuli. (2002.) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biological Conservation **106**:91–100.
- Gilman, E., Dunn, D., Read, A., Hyrenbach, K.D. and Warner, R., (2011). Designing criteria suites to identify discrete and networked sites of high value across manifestations of biodiversity. *Biodiversity and Conservation*, **20(14)**, pp.3363-3383.
- Giridhar, B. A. and Chaphekar, S. B. (1983). Pollutant absorption and removal capacity of plants as related to the quality of foliar surface. *VI World. Cong. On Air Quality, Vol. II, Paris.* Pp: 487-493.
- Green, R. E., Collingham, Y. C., Willis, S. G., Gregory, R. D., Smith, K. W., & Huntley, B. (2008). Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change. *Biology letters*, 4(5), 599-602.
- Grill, A., B. Knoflach, D. F. R. Cleary and V. Kati (2005) Butterfly, spider, and plant communities in different landuse types in Sardinia, Italy. Biodivers. Conserv. **14**:1281–1300.
- Grill, G., Lehner, B., Lumsdon, A.E., MacDonald, G.K., Zarfl, C. and Liermann, C.R., (2015.) *An index*based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters, **10(1)**, p.015001.
- Grimmett, R., Inskipp, C. and Inskipp, T. (1998.) Birds of the Indian subcontinent. London: Christopher Helm
- Gupta, S. (2011) "Ecology of medium and small sized carnivores in Sariska Tiger Reserve, Rajasthan, India", thesis PhD, Saurashtra University.

- Gurumayum, S.D., Kosygin, L. and Tamang, L. (2016) Ichthyofaunal diversity of Arunachal Pradesh, India: A part of Himalaya biodiversity hotspot *International Journal of Fisheries and Aquatic Studies.* **4(2)**: 337-346.
- Haimendorf, C. v. F. (1962). The Apa Tanis and Their Neighbors, London: Routledge & Kegam Paul.
- Haimendorf, C. v. F (1980). A Himalayan Tribe: From Cattle to Cash, New Delhi: Vikas Publishing House.
- Haimendorf, C. v. F. (1983). Himalayan Adventure: Early Travels in North-East India, New Delhi: Sterling Publishers.
- Halder, I. V., L. Barbaro, E. Corcket and H. Jactel (2008) Importance of seminatural habitats for the conservation of butterfly communities in landscapes dominated by pine plantations. Biodivers. Conserv. 17: 1149–1169.
- Hall, k. D., Zipper, C.E. and Burger, J.A. (2009). Recovery of Native Plant Communities After Mining. Virginia Cooperative Extension Publication 460-140. Virginia Polytechnic Institute and State University.
- Hauer, F. R. and Lamberti, G. (2007). *Methods in stream ecology*. vol II. Academic Press. 896p.
- Hawkins, B. A., & Cross, E. A. (1982). Patterns of refaunation of reclaimed strip mine spoils by nonterricolous arthropods. Environmental Entomology, **11(3)**, 762-775.
- Hegde, S. N. (2000) Conservation of North East Flora. Arunachal Forest News, 18(1), 2.
- Heli, T (1994): "Mithun: Pride of Arunachal Pradesh," Echo of Arunachal, 20 April.
- Hora S. L. (1921) Indian cyprinoid fishes; *Rec Indian Mus.* 22: 633-687.
- Humphrey, J. W., Hawes, C., Peace, A. J., Ferris-Kaan, R., & Jukes, M. R. (1999). Relationships between insect diversity and habitat characteristics in plantation forests. Forest ecology and management, **113(1)**, 11-21.
- ICEM. (2007) *Pilot Strategic Environmental Assessment in the Hydropower Sub-sector, Vietnam*. Final Report: Biodiversity Impacts of the hydropower components of the 6th Power Development Plan. Prepare for The World Bank, MONRE, MOI & EVN, Hanoi, Vietnam.
- ICMM. (2006). "Good Practice Guidance for Mining and Biodiversity" Published by International Council on Mining and Metals (ICMM), London, UK. Ed by Linda Starke. 141p.
- India State of Forest report (2003) Forest Survey of India, Dehra Dun.
- India state of Forest report (2017) Forest Survey of India, Dehra Dun. Vol 17, 2016-17. 364p.
- Inoue, T. (2003) Chronosequential change in a butterfly community after clear-cutting of deciduous forests in a cool temperate region of central Japan. Entomol. Sci. **6**:151–163.
- Jocqué, R., Dippenaar-Schoeman, A. S., & Zoologin, S. (2006). Spider families of the world.
- Johnson, J. A., & Arunachalam, M. (2010) Habitat Use of Fishes in streams of Kalakad Mundanthurai Tiger Reserve, India. *International Journal of Ecology & Development*, **17(F10):** 34-47.
- Joseph.J.E., Singh, M. and Kent, R. (2018). Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. *Remote Sensing of Environment*. **216**: 345–354.

- Joshi, S., P. Dawn, P. Roy, and K. Kunte (eds.) (2018). *Odonata of India, v. 1.10*. Indian Foundation for Butterflies.
- K., Pathania, P.C., Raha, A. and Chandra, K. (2018). Insecta: Lepidoptera (Moths). In: Faunal diversity of Indian Himalaya. 651-726. (Published by the Director, Zoological Survey of India, Kolkata).
- Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6): 21-27.
- Kaul, R. N., & Haridasan, K. (1987). Forest types of Arunachal Pradesh: a preliminary study. *J. Econ. Taxon. Bot*, **9(2)**: 379-389.
- Kaul, R.N. and Haridasan, K. (1987). Forest types of Arunachal Pradesh a preliminary study *J. Econ. Tax. Bot.* **9(2)**:397-38.
- Kitahara, M. (2004). Butterfly community composition and conservation in and around a primary woodland of Mount Fuji, central Japan. *Biodivers. Conserv.* **13**: 917–942.
- Kitahara, M., Yumoto, M. and Kobayashi, T. (2008). Relationship of butterfly diversity with nectar plant species richness in and around the Aokigahara primary woodland of Mount Fuji, central Japan. *Biodivers. Conserv.* **17:** 2713–2734.
- Kitching, R. L., Orr, A. G., Thalib, L., Mitchell, H., Hopkins, M.S. and Graham, A. W. (2000). Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. *Journal of Applied Ecology*, **37**:284–297.
- Koh, J. K. and Leong, T. M. (2013). *Biodiversity in the heart of Borneo: Spiders of Brunei Darussalam*. Natural History Publications (Borneo).
- Kremen, C., Colwell, R. K., Erwin, T. L., Murphy, D. D., Noss, R. F. and Sanjayan, M. A. (1993). Terrestrial arthropod assemblages: their use in conservation planning. *Conservation Biology* 7:796–808.
- Kumar, D. and Katoch, S.S., (2014.) Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India. Renewable and Sustainable Energy Reviews. 35:.101-108.
- Kumar, R.S. and Singh, P. (1999.) Discovery of a new monal from Arunachal Pradesh. *OBC Bulletin* **30:** 35–38.
- Kunte, K., S. Sondhi, and P. Roy (Chief Editors) (2018). *Butterflies of India, v. 2.53.* Indian Foundation for Butterflies.
- Lahiri, A.R. (1979). Odonata (Insecta) from different states of North Eastern India, Oriental Insects. **13** (1-2):119-132.
- Landres, P. B., Verner, J., and Thomas, J. W. (1988). Ecological uses of vertebrate indicator species: a critique. *Conservation Biology*. **2(4)**, 316-328.
- Lawrence, D.P. (2007a). Impact significance determination—back to basics. *Environmental Impact Assessment Review*. **27(8):**.755-769.
- Lawrence, D.P. (2007b). Impact significance determination—designing an approach. *Environmental Impact Assessment Review*, **27(8)**:730.
- Lehtinen, R.H., Ramanamanjato, J.B. and Raveloarison, J.G. (2003). Edge effects and extinction proneness in a herpetofauna from Madagascar. *Biodiversity and Conservation*. **12:**1357-1370.

- Linke, S., Turak, E. and Nel, J., (2011). *Freshwater conservation planning: the case for systematic approaches*. Freshwater Biology. **56(1)**: 6-20.
- Longcore, T. (2003). Terrestrial arthropods as indicators of ecological restoration success in coastal sage scrub (California, USA). *Restoration Ecology*. **11(4)**: 397-409.
- MacKinnon, J. and Phillipps, K. (1993). *The birds of Borneo, Sumatra, Java and Bali*. Oxford: Oxford University Press.
- Magurran, A. E. (2004). *Measuring biological diversity*. Blackwell Science, Oxford. 256p.
- Mahanta, C. (2016). State of India's rivers for India River Week, 2016 Brahmaputra.
- Maheswaran, G. (2012). Fauna of Protected Areas of Arunahcal Pradesh: 1-14 (Published by the Director ZSI, Kolkata).
- Majumder, S. C. and Tikader, B. K. (1991). Studies on some spiders of the family Clubionidae from India. Zool. Surv India, Calcutta.
- Makino, S., Goto, H., Inoue, T., Sueyoshi, M., Okabe, K., Hasegawa, M., Hamaguchi, K., Tanaka, H. and Okochi, I. (2006). The monitoring of insects to maintain biodiversity in Ogawa Forest Reserve. *Environ. Monit. Assess.* **120**: 477–485.
- Maleque, M. A., Maeto, K., and Ishii, H. T. (2009). Arthropods as bioindicators of sustainable forest management, with a focus on plantation forests. *Applied Entomology and Zoology*. **44(1)**, 1-11.
- Mani, M. S. (1974). *Ecology and biogeography in India*. The Hague Junk.
- Manly, B.F.J. (2005). *Multivariate Statistical Methods: A primer.* Third edition, Chapman and Hall.
- Mansfield, T.A. (1976). *Effects of air pollutants on plants*. Society for Experimental Biology Seminar Series, Cambridge.
- Margules C.R. and Pressey R.L. (2000) Systematic conservation planning. Nature. 405, 243–253.
- Martin, A. and Barber, F. R. (1971). Some Measurement of loss of atmospheric Sulpher dioxide near foliage. *Atoms. Environ.* 5: 345-352.
- McClelland, J. (1839). Indian Cyprinidae: Second Part of the Nineteenth Volume of Asiatic Researcher. or Transactions of the Society Instituted in Bengal for Inquiring into History, the Antiquities, The Art and Science & Literatures of Asia. Bishop's College Press, Calcutta, India, 19(2):217-471.
- Medhi, K., Chakraborty, R., and Upadhyay, J. (2014). Photographic Record of Smooth-Coated Otter (*Lutrogale perspicillata* Geoffroy 1826) in Nyamjang Chu Valley, Arunachal Pradesh, India. *IUCN Otter Spec. Group Bull.* **31(2)**: 75-79.
- Misra, R. (1968). Ecology workbook. Oxford and IBH Publ. Co. Calcutta.
- Mitra, M., Kumar, A., Adhikari, B. and Rawat, G. (2017). Fuelwood resources and their use pattern by Bhotia community in Niti Valley, Western Himalaya. *Botanica Orientalis Journal of Plant Science*. **10.** 1-6.
- Mondal, M., Baruah, K. K. and Rajkhowa, C. (2014). "Mithun: An Animal of Indian Pride," *Livestock Research for Rural Development*. Vol 26, No 1. Accessed on 30 October 2015,http://www.lrrd.org/lrrd26/1/mond26006.html.

- Muller-Dombois, D. and Ellenberg, H. (1974). *Aims and methods of vegetation ecology.* John Wiley and Sons, New York.
- Murdoch, W. W., Evans, F. C. and Peterson, C. H. (1972). Diversity and pattern in plants and insects. *Ecology*. **53(5)**, 819-829.
- Murray, N. L. and Stauffer, D. F. (1995). Nongame bird use of habitat in central Appalachian riparian forests. *Journal of Wildlife Management*. **59:**78–88.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*. **403(6772)**:853-858.
- Nash, H. C., Wong, M. H. and Turvey, S. T. (2016). Using local ecological knowledge to determine status and threats of the Critically Endangered Chinese pangolin (*Manis pentadactyla*) in Hainan, China. *Biological Conservation.* **196**, 189-195.
- Nautiyal, P., Bahuguna, S. N., & Thapliyal, R. P. (2001). The role of ecological factors in governing the direction, time and purpose of migration in Himalayan Mahseer *Tor putitora* (Ham.). *Applied Fisheries and Aquaculture*. **1**: 133-138.
- Nebeshwar, K., Bagra, K., & Das, D. N. (2007). A new species of the cyprinoid genus Psilorhynchoides Yazdani e al., (Cypriniformes: Psilorhynchidae) from Arunachal Pradesh, India. Zoo's Print Journal. 22: 2632-2636.
- Nel, J.L., Roux, D.J., Abell, R., Ashton, P.J., Cowling, R.M., Higgins, J.V., Thieme, M. and Viers, J.H. (2009). Progress and challenges in freshwater conservation planning. Aquatic Conservation: Marine and Freshwater Ecosystems. 19(4): 474-485.
- Nelson, S. M. (2007). Butterflies (Papilionoidea and Hesperidoidea) as potential ecological indicators of riparian quality in the semi-arid western United States. *Ecol. Indic.* **7**: 469–480.
- New, T. R. (1995) An Introduction to Invertebrate Conservation Biology. Oxford University Press, New York. Pp: 89–98.
- New, T. R. (1998). *Invertebrate Surveys for Conservation*. Oxford University Press, New York, Pp: 174–198.
- New, T. R. (2004) Moths (Insecta: Lepidoptera) and conservation: background and perspective. *J. Insect Conserv.* **8**: 79–94.
- Niemelä, J. and B. Baur (1998). Threatened species in a vanishing habitat: plants and invertebrates in calcareous grasslands in the Swiss Jura mountains. *Biodiversity Conservservation*. **7**: 1407–1416.
- Niemelä, J., Langor, D. and Spence, J. R. (1993). Effects of clear-cut harvesting on boreal groundbeetle assemblages (Coleoptera: Carabidae) in western Canada. *Conservation Biology*. **7:**551– 561.
- North-Eastern Hill University (NEHU). (2014). Perspective plan for development of Tawang River basin: Cumulative impact assessment of proposed hydropower projects, determination of basin carrying capacity and landscape level biodiversity management plan.
- Nyariki, D. M. (2009). Household data collection for socio-economic research in agriculture: Approaches and challenges in developing countries. *Journal of Social Sciences.* **19(2)**, 91-99.

- Olson, D. M. and Dinerstein, E. (1998). The global 200: A representation approach to conserving the earth's most biologically valuable ecoregions. *Conservation Biology*. **12**: 502–515.
- Oxbrough, A. G., Gittings, T., O'Halloran, J., Giller, P. S., & Smith, G. F. (2005). Structural indicators of spider communities across the forest plantation cycle. *Forest Ecology and management*. 212(1-3): 171-183.
- Pandit, M.K. and Grumbine, R.E., (2012.) Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya. *Conservation Biology*. 26(6):1061-1071.
- Parmenter, R. R. and Macmahon, J. A. (1987). Early successional patterns of arthropod recolonization on reclaimed strip mines in southwestern Wyoming: the ground-dwelling beetle fauna (Coleoptera). *Environmental Entomology*. **16(1)**: 168-177.
- Parmenter, R. R. and MacMahon, J. A. (1990). Faunal community development on disturbed lands: an indicator of reclamation success. Evaluating reclamation success: the ecological consideration. USDA, Forest Service, Northeastern Forest Station, Radnor, Pennsylvania. Pp:73-89.
- Pearce, J. L., & Venier, L. A. (2006). The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. *Ecological Indicators*. 6(4), 780-793.
- Pettersson, R. P., Ball, J P., Renhorn, K., Esseen, P. and Sjoberg, K. (1995). Invertebrate communities in boreal forest canopies as influenced by forestry and lichens with implications for passerine birds. *Biological Conservation*. **74:**57–63.
- Poff, N.L., Richter, B.D., Arthington, A.H., Bunn, S.E., Naiman, R.J., Kendy, E., Acreman, M., Apse, C., Bledsoe, B.P., Freeman, M.C. and Henriksen, J. (2010). The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. *Freshwater Biology*, **55(1)**:147-170.
- Pollard, E. and Yates, T. J. (1994). *Monitoring butterflies for ecology and conservation: the British butterfly monitoring scheme*. Springer Science & Business Media.
- Pollet, M., and Grootaert, P. (1996). An estimation of the natural value of dune habitats using Empidoidea (Diptera). *Biodiversity Conservation*. **5:**859–880.
- Proctor, J., Haridasan, K. and Smith, G. W. (1998). How Far North does Lowland Evergreen Tropical Rain Forest Go? *Global Ecology and Biogeography Letters*. Pp:141-146.
- Progar, R. A. and Schowalter, T. D. (2002). Canopy arthropod assemblages along a precipitation and latitudinal gradient among Douglas-fir Pseudotsuga menziesii forests in the Pacific Northwest of the United States. *Ecography*. 25(2): 129-138.
- R Development Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rahmani, A.R., Islam, M.Z. and Kasambe, R.M. (2016). Important Bird and Biodiversity Areas in India: Priority Sites for Conservation (Revised and updated). Bombay Natural History Society, Indian Bird Conservation Network, Royal Society for the Protection of Birds and BirdLife International (U.K.). 1992 + xii p.

- Rainio, J., & Niemelä, J. (2003). Ground beetles (Coleoptera: Carabidae) as bioindicators. *Biodiversity Conservation.* **12(3)**, 487-506.
- Rajvanshi, A., Arora, R., Mathur, V. B., Sivakumar, K., Sathyakumar, S., Rawat, G. S. and Maletha, A. (2012). Assessment of cumulative impacts of hydroelectric projects on aquatic and terrestrial biodiversity in Alaknanda and Bhagirathi basins. Uttarakhand. Wildlife Institute of India. Wildlife Institute of India, Technical Report, 203.
- Rangini, N, Lodhi, M.S, Samal, P.K, Sharma, S, and Dhyani, P. P. (2013). Review of Fauna of Dehang-Debang Biosphere Reserve, Arunachal Pradesh (India). *Nat Sci.* **11(9):**8-13.
- Rao, R. R. and Hajra, P. K. (1986.) Floristic diversity of Eastern Himalaya in a conservation perspective. Proc. Indian Acad. Sci. (Anim. Sci./ Plant Sci.) Suppl.1986: 103–125.
- Regan, H.M., Davis, F.W., Andelman, S.J., Widyanata, A. and Freese, M., (2007). Comprehensive criteria for biodiversity evaluation in conservation planning. *Biodiversity Conservation*, **16(9)**, pp.2715-2728.
- Richter, B.D., Mathews, R., Harrison, D.L. and Wigington, R., (2003). Ecologically sustainable water management: managing river flows for ecological integrity. Ecological Applications. 13(1): 206-224.
- Rodewald, P.G. and James, R. D. (1996.) Yellow-throated Vireo (Vireo flavifrons) Number 247. In: A. Poole and F. Gill, (eds.). The birds of North America. The Academy of Natural Sciences, Philadelphia, Pennsylvania, USA, and The American Ornithologists' Union, Washington, D.C., USA.
- Rodgers, A. Panwar, H.S. and Mathur, V.B. (2002). *Wildlife Protected Area in India: A Review*. Executive Summary. Wildlife Institute of India, Dehra Dun.51p.
- Rosenberg, D. M., Danks, H. V. and Luhmkuhl, D. M. (1986). Importance of insects in environmental impact assessment. *Environmental Management*. **10**:773–783.
- Rosset, V., Simaika, J.P., Arthaud, F., Bornette, G., Vallod, D., Samways, M.J. and Oertli, B. (2013). Comparative assessment of scoring methods to evaluate the conservation value of pond and small lake biodiversity. *Aquatic Conservation: Marine and Freshwater Ecosystems*, **23(1)** :23-36
- Roy, P.S., S. Singh and M.C. Porwal, (1993). Characterisation of ecological parameters in Tropical forest community a remote sensing approach. *Journ. Indian Soc. Remo. Sens.* 21(3):127-149.
- Roy, P. S., Behera, M. D., Murthy, M. S. R., Roy, A., Singh, S., Kushwaha, S. P. S., Jha, C.S., Sudhakar, S., Joshi, P.K., Reddy S.Ch., Gupta, S., Pujar, G, Dutt, C.B.S., Srivastava, V.K., Porwal, M.C., Tripathi, P, Singh, J.S., Chitale, V., Skidmore, A.K., Rajshekhar, G., Kushwaha, D., Karnataka, H., Saran, S., Giriraj, A., Padalia, H., Kale, M., Nandy, S., Jeganathan, C., Singh, C.P., Chandrashekhar, M.B., Pattanaik, C., Singh, D.K., Devagiri, G.M., Talukdar, G., Panigrahy, R.K., Singh, H., Sharma, J.R., Haridasan, K., Trivedi, S., Singh, K.P., Kannan, L., Daniel, M., Misra, M.K., Niphadkar, M., Nagbhatla, N., Prasad, N., Tripathi, O.P., Prasad, P.R.C., Dash, P., Qureshi, Q., Tripathi, S.K, Ramesh, B.R., Gowda, B., Tomar, S., Romshoo, S., Giriraj, S., Ravan, S.A., Behera, S.K., Paul, S., Das, A.K., Ranganath, B.K., Singh, T.P., Sahu, T.R., Shankar, U., Menon, A.R.R., Srivastava, G., Neeti, Sharma, S., Mohapatra, U.B., Peddi, A., Rashid, H., Salroo, I., Krishna, P.H., Hajra, P.K., Vergheese, A.O., Matin, S.,

Chaudhary, S.A., Ghosh, S., Lakshmi, U., Rawat, D., Ambastha, K., Kalpana, P., Devi, B.S.S., Gowda, B., Sharma, K.C., Mukherjee, P., Sharma, A., Davidar, P., Raju, R.R.V., Ketewa, S.S., Kant, S., Raju, V.S., Uniyal, B.P., Debnath, B., Rout, D.K., Thapa, R., Joseph, S., Chhetri, P., & Ramchandran, R. (2015). New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. *International Journal of Applied Earth Observation and Geoinformation*, *39*, 142-159.

- Roy, P. (2013). *Callerebia dibangensis* (Lepidoptera: Nymphalidae: Satyrinae), a new butterfly species from the eastern Himalaya, India. *Journal of Threatened Taxa*, **5(13):** 4725-4733.
- Roy, P. (2017). A record of *Limenitis rileyi* Tytler, 1940 (Lepidoptera, Nymphalidae, Limenitidinae) from Arunachal Pradesh, India. *Journal of Threatened Taxa*. **9(1)**: 9774-9776.
- Rykken, J. J., Capen, D. E. and Mahabir, S. P. (1997). Ground beetles as indicators of land type diversity in the green mountains of Vermont. *Conservation Biology*. **11**:522–530.
- Sample, B. E., Cooper, R. J. and Whitmore, R. C. (1993). Dietary shifts among songbirds from a diflubenzuron-treated forest. *Condor.* **95**:616–624.
- Samways, M. J., and Samways, M. J. (1994). *Insect Conservation Biology (Conservation Biology, No* 2). Springer Science & Business Media.
- Samways, M. J., (1993). Dragonflies (Odonata). in taxic overlays and biodiversity conservation. Perspectives on insect conservation, Pp:111-123.. K.J, Gaston, T.R. New, and M.J. Samways (eds). Intercept: Andover, UK.
- Sanders, P. J. W. (1976). The estimation of pollution damage. Manchester Univ. Press.
- Sangha, H. S. and Naoroji, R. (2012.). New and significant records of birds in Arunachal Pradesh, north-east India in Arunachal Pradesh. Oriental Bird Club
- Sanyal, S.K., Mallick, K., Khan, S., Bandyopdhyay, U., Mazumder, A., Bhattacharyya,
- Schlosser, I. J. (1991). Stream fish ecology: a landscape perspective. *BioScience*. 41(10): 704-712.
- Schmidt, E. (1985). Habitat inventarization, characterization and bioindication by a" Representative Spectrum of Odonata Species (RSO)". *Odonatologica*. **14(2)**: 127-133.
- Schmiegelow, F. K. A., Machtans, C. S. and Hannon, S. J. (1997). Are boreal birds resilient to forest fragmentation? An experimental study of short-term community responses. *Ecology.* 78:1914– 1932.
- Scholz, F. (1981). Considerations about of air pollution resistance in polluted stands and consequences for correlated trails. *Arch Och.Srod.* 2:91-100.
- Schowalter, T. D., Zhang, Y. L., and Rykken, J. J. (2003). Litter invertebrate responses to variable density thinning in western Washington forest. *Ecological Applications*. **13(5)**: 1204-1211.
- Sehgal, K. L. (1999). Coldwater fish and fisheries in the Indian Himalayas: rivers and streams. *Fish and fisheries at higher altitudes: Asia. Food and Agriculture Organization of the United Nations Technical Paper.* 385.p
- Sethi, D. V. and Tikader, B. K. (1988). Studies on some giant spiders of the family Heteropodidae from India. Zool. Surv India, Calcutta.

- Singh, A. P. (2013). Rediscovery of the Empress, *Sasakia funebris* Leech (Lepidoptera: Nymphalidae: Nymphalinae: Apaturini) after 88 years in India. *Journal of Threatened Taxa*. **5(10)**: 4514-4516.
- Singh, A. P. and Das, D. J. (2016). Butterfly Atlas of Arunachal Pradesh, India. Rain Forest Research Institute, Jorhat, Assam. Indian Council of Forestry Research & Education 462p.
- Sinha, B, and Tamang, L. (2015). Fish diversity of Ganga Lake in Itanagar, Arunachal Pradesh. *Bulletin of Arunachal Forest Research*. **28 & 29 (1 & 2)**: 7-11.
- Smetacek, P. (2017). A Naturalist's Guide to the Butterflies of India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. John Beaufoy Publishing Limited.
- Song, D. X., Zhu, M. S. and Chen, J. (1999). *The Spiders of China*. Shijiazhuang: Hebei University of Science and Techology Publishing House. 640 p.
- Soni, P., Vasistha, H.B. and Kumar, O.M. (1992). *Surface Mine Lands Problems and Prospects.* A report in Eco-restoration of Phosphate mined stream. I.C.F.R.E.-18, New Forest, Dehra Dun.
- South Asian Network on Dams, Rivers and People (SANDRP) (2014). Submerged what to expect if the Dibang river is dammed.
- Southwood, T. R., Brown, V. K. and Reader, P. M. (1979). The relationships of plant and insect diversities in succession. *Biological Journal of the Linnean Society*. **12(4)**: 327-348.
- Sow, M.M., Majdi, N., Muylaert, K., Tackx, M., Julien, F., Probst, J.L., Mialet, B., Sutra, C., Probst, A., Thébault, J.M. and Kenarlikdjian, M. (2016). Retention of nutrients, suspended particulate matter and phytoplankton in a pondage associated with a run-of-the-river type hydroelectric power plant. *Ecohydrology*, 9(2), pp.229-237.
- Stattersfield, A. J., Crosby, M. J., Long, A. J., and Wege, D. C. (2005). Endemic bird areas of the world: priorities for biodiversity conservation.
- Steinke, J. A. (2016). A comparative study of herpetofauna in a primary forest and reforested area in Coastal Ecuador. *Journal of Young Investigators*. **30(4):**14- 19.
- Stewart, B.A., (2011). Assessing the ecological values of rivers: an application of a multi-criteria approach to rivers of the South Coast Region, Western Australia. *Biodiversity Conservation*. 20(13):3165-3188.
- Stinson, C. S. A. and Brown, V. K. (1983). Seasonal changes in the architecture of natural plant communities and its relevance to insect herbivores. *Oecologia*. **56(1)**, 67-69.
- Sutherland, W.J. (2006). *Ecological census techniques; A handbook* Second edition. Cambridge University Press. 450p.
- Swann, D. E., Kawanishi, K. and Palmer, J. (2010). "Evaluating Types and Features of Camera Traps in Ecological Studies: A Guide for Researchers". In O'Connell, A. F.; Nichols, J. D., Karanth, U. K. Camera Traps in Animal Ecology: Methods and Analyses. Tokyo, Dordrecht, London, Heidelberg, New York: Springer. Pp: 27–43.
- Thoni, R. J., and Gurung, D. B. (2014). *Parachiloglanis bhutanensis*, a new species of torrent catfish (Siluriformes: Sisoridae) from Bhutan. *Zootaxal* **3869(3)**: 306-312.
- Tikader, B. K. (1982). The Fauna of India. Spiders: Araneae. Vol. II. 536 pp. Zool. Surv. India, Calcutta.

- Tikader, B. K., & Malhotra, M. S. (1980). *The Fauna of India. Spiders (Thomisidae and Lycosidae)*. Zoological Survey of India, Calcutta. 443p.
- Trivedy, R. K. and Goel, P. K. (1986). Chemical and Biological method for water pollution studies. *Environmental publication* (Karad, India), **6:** 10-12.
- Trivedy, R. K., and Goel, P. K. (1984). *Chemical and biological methods for water pollution studies*. Environmental publications.
- Trombulak SC and Frissell CA. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. *Conservation biology*. **14(1)**:18-30.
- Urbina-Cardona, J.N. (2008). Conservation of Neotropical heretofauna: Research trends and challenges. *Tropical Conservation Science*. **1(4)**:359-375.
- Vagholikar, N. and Das, P. J. (2010). Damming Northeast India. Kalpavriksh, Aranayak and ActionAid India. Pune/Guwahati/New Delhi.20p.
- Vaughn, C. C., (2010). Biodiversity Losses and Ecosystem Function in Freshwaters: Emerging Conclusions and Research Directions. BioScience. **60(1)**:25-35.
- Wali, M.K. and Freeman, P.G. (1973). Ecology of some surface mine area in North Dakota. Pp: 27-45.
 (Edt.) M.K. Wali. North Dekota Geological Survey Education Series. 5, Grand Forks, H.D.
- Waringer, J. A. (1989). Life cycle, horizontal microdistribution and current resistance of Allogamus auricollis Trichoptera: Limnephilidae in an Austrian mountain brook. *Freshwater Biology*. **22(2)**: 177-188.
- Welsh, H.H., Jr. (1987) Monitoring herpetofauna in woodlands of north western California and south west Oregon: a comparative strategy. Pp. 203-213. In. *Multiple – Use Management of Califirnia's hardwood resources*. T.R. Plumb, N.H. Pillisbury (eds. Gen. Tech. Regional Environmental Planning. PSW – 100) US Department of Agriculture, Forest Service.
- Whelan, C.J., Wenny, D.G. and Marquisc, R.J. (2008) Ecosystem Services Provided by Birds. *Annals of the New York Academy of Sciences*, Vol. 1134, 01.06. p. 25-60.
- WII a (Ongoing). Establishing ecological baseline for long term monitoring of tigers, co-predators and prey species in Dibang Wildlife Sanctuary and it's adjoining landscapes in Arunachal Pradesh, India. Wildlife Institute of India, Dehradun.
- WII b (Ongoing). An Investigation of species occupancy patterns and niche differentiation among sympatric carnivores across varying land use and disturbance regimes in and around Mehao Wildlife Sanctuary, Arunachal Pradesh. Wildlife Institute of India, Dehradun.
- Wilson, C.W., Masters, R E. and Bukenhofer, G.A. (1995). Breeding bird response to pine-grassland community restoration for red-cockaded woodpeckers. *Journal of Wildlife Management*. 59:56– 67.

World Spider Catalog (2018). World Spider Catalog. Version 19.5. Natural History Museum Bern.

	Annexure 5.1: Plant S				1	1		
S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
1 1	Acanthaceae	FUIII						
1	Andrographis paniculata	Н				++	**	
2	Anisomeles indica	H		+	+	++	***	
3	Asystasia neesiana					++	**	
4	Justicia adhatoda	S		+	+	++	***	
5	Justicia mollissima	H		2	2	++	***	
6	Justicia parvifolia	H			-	++	**	
7	Phlogacanthus curviflorus	S	2	33	35		*	
8	Phlogacanthus tubiflorus	S	+	+	+	++	***	
9	Strobilanthes coloratus	S				++	**	
10	Strobilanthes sp	S	129	16	145		*	
11	Strobilanthes rhombifolia	H				++	**	
12	Thunbergia coccinea	C		+	+		*	
2	Achariaceae							
13	Gynocardia odorata	T	1	4	5	++	***	
3	Acoraceae							
14	Acorus calamus	H				++	**	
4	Actinidiaceae							
15	Saurauia fasciculata	Т	+		+		*	
16	Saurauia griffithii	T	11	3	14		*	
17	Saurauia napaulensis	T	14	9	23		*	
5	Adoxaceae							
18	Viburnum nervosum	Т				++	**	
19	Sambucus javanica	T		+	+		*	
20	Sambucus hookeri		7	15	22		*	
6	Altingiaceae							
21	Altingia excelsa	Т	3	3	6		*	
7	Amaranthaceae							
22	Achyranthes bidentata	Н	16	18	34	++	***	
23	Amaranthus hybridus	Н	+	+	+	++	***	
24	Amaranthus viridis	Н	<u> </u>	+	+	++	***	
25	Cyathula prostrata	Н				++	**	
8	Anacardiaceae							
26	Lannea coromandelica	Т			1	++	**	
27	Mangifera sylvatica	Т				++	**	
28	Pegia nitida	С	+		+		*	

ANNEXURES

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
29	Rhus wallichiana	Т	+		+	++	***	
30	Spondias pinnata	Т				++	**	
9	Apiaceae							
31	Centella asiatica	Н		+	+	++	***	
32	Heracleum peucedanum	Н	+		+		*	
33	Oenanthe javanica	Н		+	+	++	***	
10	Apocynaceae							
34	Beaumontia grandiflora	S		+	+		*	
35	Carissia	С	12	11	23		*	
36	Cascabela thevetia	S				++	**	
37	Hoya globulosa	С	+		+		*	
38	Marsdenia tinctoria	С	+		+		*	
11	Araceae							
39	Aglaonema hookerianum	Н				++	**	
40	Alocasia fallax	Н				++	**	
41	Alocasia fornicata	Н	+	+	+	++	***	
42	Ariopsis peltata	Н				++	**	
43	Arisaema concinnum	Н	2	6	8	++	***	
44	Arisaema decipiens	Н	+		+	++	***	
45	Arisaema jacquemontii	Н	11	11	22	++	***	
46	Arisaema nepenthoides	Н		2	2	++	***	
47	Arisaema propinquum	Н		+	+	++	***	
48	Arisaema speciosum	Н				++	**	
49	Lasia spinosa	Н				++	**	
50	Pothos scandens	С	+	+	+	++	***	
51	Rhaphidophora decursiva	С	95	73	168	++	***	
52	Rhaphidophora glauca	С	0	0	0		*	
53	Rhaphidophora hookeri	С	10	51	61		*	
12	Araliaceae							
54	Aralia armata	Т	6	21	27	++	***	
55	Brassaiopsis glomerulata	Т	+			++	***	
56	Brassaiopsis hainla	Т	10	18	28		*	
57	Brassaiopsis simplicifolia	Т	0	10	10		*	
58	Hydrocotyle himalaica	Н	5	4	9		*	
59	Macropanax dispermus	Т	6	1	7	++	***	
60	Macropanax undulatus	Т	0	1	1	++	***	
61	Parapentapanax subcordatum	Т				++	**	
62	Schefflera hypoleuca	С		3	3	++	***	
63	Trevesia palmata	Т	4	6	11	++	***	

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
13	Arecaceae							
64	Calamus erectus	С				++	**	
65	Calamus flagellum	С		5	5	++	***	
66	Calamus floribundus	С		6	6	++	***	
67	Calamus leptospadix	С		1	1	++	***	
68	Calamus nambariensis	С				++	**	
69	Calotropis gigantea	S				++	**	
70	Caryota urens	Т	6	6	12	++	***	
71	Livistona jenkinsiana	Т				++	**	
72	Marsdenia roylei	S				++	**	
73	Periploca calophylla	С	27		27		*	
74	Wallichia oblongifolia	S	0	2	2		*	
14	Asparagaceae							
75	Chlorophytum tuberosum	Н				++	**	
76	Maianthemum oleraceum	Н	+		+		*	
77	Ophiopogon intermedius	Н	62	14	76		*	
15	Asteraceae							
78	Acmella oleracea	Н	+	+	+	++	***	
79	Ageratum conyzoides	Н	23	5	28	++	***	
80	Anaphalis busua	Н				++	**	
81	Anaphalis contorta	Н		+	+	++	***	
82	Artemisia indica	Н	44	23	67	++	***	
83	Artemisia maritima	Н				++	**	
84	Artemisia nilagirica	Н		+	+	++	***	
85	Aster himalaicus	Н				++	**	
86	Bidens biternata	Н	23		23	++	***	
87	Bidens pilosa	Н	6		6	++	***	
88	Blumea	Н		4	4		*	
89	Blumea trieracifolia var. macrostachya	Н		+	+		*	
90	Blumea fistulosa	Н		+	+		*	
91	Blumea pannosa	Н				++	**	
92	Crassocephalum crepidioides	С	+	+	+	++	***	
93	Erigeron bonariensis	Н		+	+		*	
94	Eupatorium odoratissimum	Н	+		+	++	***	
95	Gynura nepalensis	Н		+	+	++	***	
96	Innula	Н		1	1		*	
97	Lactuca virosa	Н	<u> </u>			++	**	
98	Laphangium affine	Н		+	+	++	***	
99	Mikania micrantha	С				++	**	

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
100	Senecio cappa	Н		+	+	++	***	
101	Sigesbeckia orientalis	Н	+	+	+	++	***	
102	Sonchus oleraceus	Н	+	+	+	++	***	
103	Spilanthes paniculata	Н	9	2	11	++	***	
104	Tagetes minuta	Н		+	+	++	***	
105	Xanthium	Н	1		1		*	
106	Youngia japonica	Н		+	+		*	
16	Balsaminaceae							
107	Impatiens acuminata	Н		+	+	++	***	
108	Impatiens arguta	Н	66	43	109		*	
109	Impatiens bicornuta	Н				++	**	
110	Impatiens brachycentra	Н				++	**	
111	Impatiens dolichoceras	Н		+	+		*	
112	Impatiens racemosa	Н	+	+	+	++	***	
113	Impatiens stenantha	Н		+	+		*	
114	Impatiens xanthina	Н	+		+		*	
17	Basellaceae							
115	Basella alba	Н				++	**	
18	Begoniaceae							
116	Begonia cathcartii	Н	+	+	+		*	
117	Begonia griffithiana	Н		3	3		*	
118	Begonia longifolia	Н	3	4	7		*	
119	Begonia nepalensis	Н				++	**	
120	Begonia palmata	Н		+	+	++	***	
121	Begonia roxburghii	Н				++	**	
19	Betulaceae							
122	Alnus nepalensis	Т	0	3	3	++	***	
123	Alnus nitida	Т	1	3	4		*	
20	Bignoniaceae							
124	Oroxylum indicum	Т				++	**	
125	Stereospermum chelonoides	Т	3	2	5		*	
21	Boraginaceae							
126	Cordia dichotoma	Т	1	2	3		*	
127	Cynoglossum wallichii	Н		+	+		*	
128	Ehretia wallichiana	Т	1	0	1		*	
129	Trigonotis microcarpa	Н		+	+		*	
22	Brassicaceae							
130	Cardamine hirsuta	Н	+	+	+	++	***	
23	Buddlejaceae							

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
131	Buddleja asiatica	Н	+		+	++	***	
24	Burseraceae							
132	Canarium strictum	Т				++	**	
133	Garuga floribunda	Т				++	**	
25	Cactaceae							
134	Opuntia dillenii	Н		+	+	++	***	
26	Campanulaceae							
135	Campanumaea parviflora	Н				++	**	
136	Lobelia succulenta	Н				++	**	
27	Cannabaceae							
137	Cannabis sativa	Н	+	+	+	++	***	
138	Celtis tetrandra	Т	0	2	2		*	
139	Trema orientalis	Т	2	8	10		*	
28	Cannaceae							
140	Canna indica	Н				++	**	
29	Capparaceae							
141	Capparis multiflora	S		+	+		*	
30	Caprifoliaceae							
142	Valeriana jatamansi	Н	+		+		*	
31	Caryophyllaceae							
143	Cerastium cerastoides	Н				++	**	
144	Drymaria cordata	Н	5	13	18	++	***	
145	Stellaria monosperma	Н	4	15	19	++	***	
32	Chloranthaceae							
146	Chloranthus elatior	S	3	20	23		*	
33	Clusiaceae							
147	Garcinia cowa	Т				++	**	
148	Garcinia elliptica	Т	3	10	13		*	
149	Garcinia stipulata	Т				++	**	
150	Mesua assamica	Т				++	**	
34	Colchicaceae							
151	Disporum calcaratum	Н	14		14		*	
152	Disporum cantoniense	Н	+		+		*	
35	Combretaceae							
153	Terminalia bellirica	Т	0	2	2	++	***	
154	Terminalia chebula	Т		+	+	++	***	
155	Terminalia myriocarpa	Т	1	4	5	++	***	1
36	Commelinaceae							1
156	Amischotolype mollissima	Н		1	1		*	

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
157	Commelina appendiculata	Н		2	2	++	***	
158	Commelina benghalensis	Н	15	20	35	++	***	
159	Cyanotis cristata	Н	+	+	+	++	***	
160	Cyanotis vaga	Н	+	+	+	++	***	
161	Murdannia nudiflora	Н				++	**	
162	Streptolirion volubile	С	7	12	19		*	
37	Convolvulaceae							
163	Argyreia nervosa	С				++	**	
164	Ipomoea batatas	Н				++	**	
165	Ipomoea fistulosa	Н				++	**	
166	Ipomoea nil	С				++	**	
167	Porana paniculata	С				++	**	
38	Coriariaceae							
168	Coriaria nepalensis	S	1	0	1		*	
39	Costaceae							
169	Cheilocostus speciosus	Н				++	**	
40	Cucurbitaceae							
170	Hodgsonia macrocarpa	С		1	1	++	***	
171	Momordica cochinchinensis	С	+	+	+	++	***	
172	Neoalsomitra clavigera	С		1	1		*	
173	Solena amplexicaulis	С	2	11	13	++	***	
174	Solena heterophylla	С	+	+	+	++	***	
175	Thladiantha capitata	С		+	+	++	***	
176	Thladiantha cordifolia	С	2	4	6		*	
41	Cyperaceae							
177	Carex baccans	Sg	0	1	1		*	
178	Carex longipes	Sg		+	+	++	***	
179	Carex thomsonii	Sg		+	+		*	
180	Cyperus alulatus	Sg				++	**	
181	Cyperus exaltatus	Sg				++	**	
182	Cyperus rotundus	Sg	1	0	1	++	***	
183	Kyllinga brevifolia	Sg				++	**	
184	Scleria sp	Sg	0	9	9		*	
42	Dilleniaceae							
185	Dillenia indica	Т				++	**	
186	Dillenia scabrella	Т				++	**	
43	Dioscoreaceae							
187	Dioscorea glabra	С	+		+	++	***	
188	Dioscorea pentaphylla	С		2	2	++	***	

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
189	Dioscorea belophylla	С				++	**	
190	Dioscorea alata	С				++	**	
44	Dipterocarpaceae							
191	Dipterocarpus gracilis	Т				++	**	
45	Ebenaceae							
192	Diospyros lanceifolia	Т	5	10	15		*	
46	Elaeocarpaceae							
193	Elaeocarpus floribundus	Т		+	+	++	***	
47	Ericaceae							
194	Agapetes forrestii	S				++	**	
195	Agapetes griffithii	S				++	**	
196	Gaultheria codonantha	С	+		+		*	
197	Lyonia ovalifolia	Т	3	0	3		*	
198	Vaccinium vacciniaceum	S	+		+		*	
48	Euphorbiaceae							
199	Croton triqueter	S		+	+		*	
200	Euphorbia pulcherrima	S				++	**	
201	Macaranga denticulata	Т	26	7	33	++	***	
202	Mallotus philippensis	Т				++	**	
203	Mallotus sp	Т	0	2	2		*	
204	Ostodes paniculata	Т	19	18	47	++	***	
205	Ricinus communis	S		+	+	++	***	
49	Fabaceae							
206	Acacia pinnata	С	4	12	16	++	***	
207	Acacia pruinescens	Т				++	**	
208	Acrocarpus fraxinifolius	Т				++	**	
209	Albizia chinensis	Т	5	3	8	++	***	
210	Albizia lucidior	Т				++	**	
211	Albizia procera	Т	0	1	1	++	***	
212	Bauhinia ovatifolia	С	+		+	++	***	
213	Bauhinia purpurea	Т		+	+	++	***	
214	Caesalpinia spinosa	С		+	+	++	***	
215	Cassia	S	0	6	6		*	
216	Cassia notabilis	S				++	**	
217	Dalbergia pinnata	Т	0	1	1	++	***	
218	Dalea purpurea	Н	+		+		*	
219	Desmodium laxiflorum	S	1	0	1	++	***	<u> </u>
220	Entada phaseoloides	С	11	8	19	++	***	<u> </u>
221	Erythrina variegata	Т	+	+	+	++	***	<u> </u>

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
222	Indigofera sp.	S	1	0	1		*	
223	Maniltoa polyandra	С				++	**	
224	Millettia podocarpa	С	19	2	21		*	
225	Mucuna bracteata	С	11	6	17	++	***	
226	Pueraria wallichii	Н				++	**	
227	Senna occidentalis	S	+		+	++	***	
228	Shuteria involucrata	С	+	+	+		*	
229	Suphora sp.	S	3	1	4		*	
50	Fagaceae							
230	Castanopsis hystrix	Т				++	**	
231	Castanopsis indica	Т	41	58	99	++	***	
232	Castanopsis lanceifolia	Т				++	**	
233	Castanopsis tribuloides	Т	21	1	22	++	***	
234	Lithocarpus dealbatus	Т	28	6	34	++	***	
235	Lithocarpus elegans	Т	0	1	1		*	
236	Lithocarpus falconeri	Т				++	**	
237	Lithocarpus fenestratus	Т	22	0	22	++	***	
238	Lithocarpus listeri	Т	1	5	6		*	
239	Lithocarpus pachyphyllus	Т	14	9	23	++	***	
240	Quercus semiserrata	Т	0	1	1		*	
51	Gentianaceae							
241	Exacum tetragonum	Н				++	**	
52	Gesneriaceae							
242	Aeschynanthus acuminatus	Н		+	+		*	
243	Chirita macrophylla	Н	+	+	+		*	
244	Henckelia dibangensis	Н		+	+		*	
245	Henckelia oblongifolia	S	0	4	4		*	
246	Loxostigma griffithii	Н		+	+		*	
247	Platystemma violoides	Н				++	**	
248	Rhynchotechum ellipticum	S	29	47	76		*	
53	Hamamelidaceae							
249	Exbucklandia cordifolia	Т	7	0	7		*	
54	Hydrangeaceae							
250	Hydrangea serratifolia	S				++	**	
251	Hydrangea robusta	S	1	0	1		*	
55	Hypericaceae							
252	Hypericum hookerianum	S				++	**	
56	Hypoxidaceae							
253	Molineria capitulata	Н	13	49	62		*	

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
57	Icacinaceae							
254	Natsiatum herpeticum	S	+		+		*	
58	Iteaceae							
255	Itea macrophylla	Т	2	0	2	++	***	
256	Itea sp.	С	1	2	3		*	
59	Juglandaceae							
257	Engelhardtia spicata	Т	39	7	46	++	***	
60	Lamiaceae							
258	Achyrospermum densiflorum	Н	44	9	53		*	
259	Ajuga macrosperma	Н	23	8	31	++	***	
260	Callicarpa arborea	Т	3	1	4	++	***	
261	Clinopodium capitellatum	Н				++	**	
262	Elsholtzia ciliata	Н		+	+	++	***	
263	Leucas aspera	Н	3		3	++	***	
264	Leucas ciliata	Н				++	**	
265	Plectranthus strigosus	S				++	**	
266	Pogostemon benghalensis	Н	+		+	++	***	
267	Premna barbata	Н	+	+	+		*	
268	Premna bengalensis	Т	+		+	++	***	
269	Vitex altissima	Т	1	0	1		*	
61	Lauraceae							
270	Actinodaphne obovata	Т	3	9	12	++	***	
271	Cinnamomum bejolghota	Т				++	**	
272	Cinnamomum glanduliferum	Т				++	**	
273	Cinnamomum sulphuratum	Т	3	0	3	++	***	
274	Lindera neesiana	Т	1	0	1		*	
275	Litsea cubeba	Т	54	29	83		*	
276	Litsea mishmiensis	Т	0	4	4		*	
277	Litsea monopetala	Т	0	2	2		*	
278	Litsea salicifolia	Т	+		+		*	
279	Phoebe cooperiana	Т	0	6	6	++	***	
62	Loranthaceae							
280	Helixanthera ligustrina	S	0	1	1		*	
281	Helixanthera parasitica	S	+		+		*	
282	Taxillus vestitus	S	+		+		*	
63	Lythraceae							
283	Duabanga grandiflora	Т				++	**	
284	Lagerstroemia minuticarpa	Т				++	**	
285	Lagerstroemia parviflora	Т	1	0	1	++	***	

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
64	Magnoliaceae	1 0111						
286	Magnolia campbellii	T				++	**	
287	Magnolia griffithii	Т				++	**	
288	Michelia excelsa	Т				++	**	
289	Michelia champava	Т		+	+	++	***	
290	Talauma hodgsonii	Т				++	**	
65	Malvaceae							
291	Abutilon indicum	Н				++	**	
292	Bombax ceiba	Т				++	**	
293	Grewia serrulata	Т				++	**	
294	Kydia calycina	Т	5	8	13	++	***	
295	Pterospermum acerifolium	Т	7	0	7	++	***	
296	Sida rhombifolia	Н		+	+	++	***	
297	Sterculia villosa	Т				++	**	
298	Triumfetta abyssinica	S				++	**	
299	Urena lobata	Н	1		1	++	***	
66	Melastomataceae							
300	Melastoma malabathricum	S				++	**	
301	Osbeckia nutans	Н				++	**	
302	Osbeckia stellata	Н				++	**	
303	Oxyspora paniculata	S	13	9	22	++	***	
304	Sarcopyramis napalensis	Н	+		+		*	
67	Meliaceae							
305	Aglaia spectabilis	Т				++	**	
306	Chukrasia tabularis	Т				++	**	
307	Dysoxylum mollissimum	Т	1	9	10	++	***	
308	Toona hexandra	Т	0	1	1	++	***	
68	Menispermaceae							
309	Cissampelos pareira	С	+	+	+	++	***	
310	Diploclisia glaucescens	Н				++	**	
311	Stephania elegans	С	21	7	28	++	***	
312	Tinospora crispa	С				++	**	
69	Moraceae							
313	Artocarpus chama	Т	2	0	2	++	***	
314	Ficus roxburghii	Т	1	7	8	++	***	
315	Ficus sp	Т	0	1	1		*	
316	Ficus cuneata	Т				++	**	
317	Ficus cyrtophylla	Т	0	5	5		*	
318	Ficus heterophylla	Т	+	+	+	++	***	

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
319	Ficus hookeriana	T	0	4	4		*	
320	Ficus lacor	T	+		+		*	
321	Ficus semicordata	T	21	25	46	++	***	
322	Maclura cochinchinensis	Т	3		3		*	
323	Morus macroura	Т				++	**	
70	Musaceae							
324	Musa acuminata	Н		+	+	++	***	
325	Musa balbisiana	Н		+	+	++	***	
326	Musa paradisiaca	Н				++	**	
71	Myristicaceae							
327	Knema cinerea	Т	0	6	6		*	
72	Marantaceae							
334	Phrynium pubinerve	Н						
73	Myrtaceae							
328	Psidium guajava	Т		+	+	++	***	
329	Syzygium formosum	Т		+	+	++	***	
74	Oleaceae							
330	Jasminum elongatum	S				++	**	
331	Jasminum dispermum	Н				++	**	
332	Jasminum laurifolium	S	+	+	+		*	
75	Orchidaceae							
333	Aerides multiflora	0				++	**	
334	Anoectochilus brevilabris	0		+	+		*	
335	Arundina graminifolia	0				++	**	
336	Bulbophyllum affine	0	+		+	++	***	
337	Bulbophyllum careyanum	0				++	**	
338	Bulbophyllum cauliflorum	0				++	**	
339	Bulbophyllum guttulatum	0				++	**	
340	Calanthe griffithii	0				++	**	
341	Calanthe plantaginea	0	+		+		*	
342	Coelogyne barbata	0				++	**	
343	Coelogyne corymbosa	0				++	**	
344	Coelogyne stricta	0	+		+		*	
345	Cymbidium aloeifolium	0	+	+	+	++	***	
346	Cymbidium cyperifolium	0				++	**	
347	Cymbidium eburneum	0				++	**	
348	Cymbidium elegans	0				++	**	
349	Cymbidium iridioides	0				++	**	
350	Cymbidium lancifolium	0	4	0	4		*	

S.	Name	Life	Dri	Tangon	SAT	Others	CL	CS
No.		Form					**	
351	Dendrobium densiflorum	0				++		
352	Dendrobium hookerianum	0				++	**	
353	Dendrobium lituiflorum	0				++	**	
354	Dendrobium moschatum	0				++	**	
355	Dendrobium transparens	0	+	+	+		*	
356	Epipogium roseum	0		+	+		*	
357	Eria flava	0				++	**	
358	Goodyera procera	0	0	2	2	++	***	
359	Lepanthes pedunculata	0				++	**	
360	Liparis delicatula	0	+		+	++	***	
361	Phaius flavus	0				++	**	
362	Pholidota imbricata	0				++	**	
363	Pholidota sp.							
364	Rhynchostylis retusa	0				++	**	
365	Spiranthes sinensis	0				++	**	· · · · ·
366	Tropidia curcugiloides	0	+	+	+		*	
367	Vanda cristata	0		+	+		*	
76	Oxalidaceae							
368	Averrhoa carambola	Т				++	**	
369	Oxalis corniculata	Н		10	10		*	
77	Papaveraceae							
370	Corydalis geraniifolia	Н				++	**	
78	Pandanaceae							
371	Pandanus odoratissimus	Т	5	11	16	++	***	
79	Pentaphylacaceae							
372	Eurya acuminata	Т	+	+	+		*	
373	Eurya trichocarpa	T	+	+	+		*	
374	Eurya nitida	Т	3	2	5		*	
80	Phyllanthaceae							
375	Bischofia javanica	Т	+	+	+	++	***	
376	Bridelia retusa	Т	1	0	1		*	
377	Glochidion zeylanicum	Т	+		+		*	
81	Piperaceae							
378	Piper graeffei	S				++	**	
379	Piper betle	С	4		4	++	***	
380	' Piper kadsura	С	9	33	42		*	<u> </u>
381	' Piper petiolatum	С	21	34	55		*	
382	Piper attenuatamentum	C	<u> </u>	8	8		*	
383	Piper clarkei	C	31	27	58		*	<u> </u>

384		Form		Tangon	SAT	Others	CL	CS
J04	Piper pedicellatum	S	112	139	251		*	VU
385	Piper rhytidocarpum	С		17	17		*	
386	Piper sylvestre	С	19	22	41		*	
82	Plantaginaceae							
387	Plantago asiatica subsp. erosa	Н		+	+		*	
388	Veronica anagallis-aquatica	S	12	3	15	++	***	
83	Poaceae							
389	Arundinaria falcata	G				++	**	
390	Bambusa balacoa	G		+	+		*	
391	Bambusa pallida	G		+	+	++	***	
392	Bambusa tulda	G		+	+	++	***	
393	Cephalostachyum latifolium	G				++	**	
394	Chimonobambusa callosa	G				++	**	
395	Coix lacryma-jobi	G		+	+		*	
396	Cynodon dactylon	G	+	+	+	++	***	
397	Dendrocalamus	В	0	22	22		*	
398	Dendrocalamus giganteus	В		+	+	++	***	
399	Dendrocalamus hamiltonii	В		+	+	++	***	
400	Dendrocalamus strictus	В		+	+	++	***	
401	Imperata cylindrica	G	+	+	+	++	***	
402	Miscanthus sp.	G	5	0	5		*	
403	Miscanthus sinensis	G	+	+	+	++	***	
404	Neomicrocalamus prainii	G	0	1	1		*	
405	Oplismenus compositus	G	0	3	3		*	
406	Oplismenus hirtellus	G	76	53	129		*	
407	Phragmites karka	G	+	+	+	++	***	
408	Phyllostachys bambusoides	G		+	+		*	
409	Poa annua	G				++	**	
410	Pogonatherum paniceum	G	+	+	+	++	***	
411	Pogostemon elsholtzionides	G		+	+		*	
412	Saccharum sp.							
413	Saccharum spontaneum	G	+	+	+	++	***	
414	Schizostachyum capitatum	G				++	**	
415	Schizostachyum polymorphum	G				++	**	
416	Setaria palmifolia	G	+		+		*	
417	Stapletonia arunachalensis	G	2	1	3		***	
418	Themeda anathera	G	+	+	+	++	***	
419	Thysanolaena latifolia	G	+	+	+	++	***	
84	Polygalaceae							

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
420	Polygala watresii	S	2	0	2		*	
85	Polygonaceae							
421	Fagopyrum dibotrys	Н	50	3	53	++	***	
422	Persicaria capitata	Н	23	2	25	++	***	
423	Persicaria chinensis	Н	31		31	++	***	
424	Polygonum auriculatum	Н	+		+		*	
425	Polygonum chiloensis	Н	5		5		*	
426	Polygonum fallacinum	Н				++	**	
427	Polygonum molle	Н	1	18	19		*	
428	Polygonum runcinatum	Н	+		+		*	
429	Polypogon monspeliensis	Н	24		24		*	
86	Primulaceae							
430	Ardisia japonica	S	6	0	6		*	
431	Embelia ribes	С	+	+	+	++	***	
432	Embelia floribunda	С	25		25		*	
433	Maesa chisia	Т	76	19	95	++	***	
434	Maesa indica	Т	19	8	27	++	***	
435	Myrsine semiserrata	S	3	0	3	++	***	
87	Ranunculaceae							
436	Clematis acuminata	С	2	4	24		*	
437	Clematis gouriana	С		+	+	++	***	
438	Clematis grata	С	+	+	+		*	
439	Coptis teeta	Н				++	**	
440	Fragaria indica	Н	36	7	43		*	
441	Ranunculus sikkimensis	Н				++	**	
88	Rhamnaceae							
442	Hovenia acerba	Т				++	**	
443	Rhamnus napalensis	S				++	**	
444	Ventilago maderaspatana	С	+		+		*	
89	Rosaceae							
445	Agrimonia pilosa	Н	<u> </u>	+	+	++	***	
446	Aruncus sp	Н	<u> </u>	2	+		*	
447	Photinia wardii	S	<u> </u>	+	+		*	
448	Potentilla microphylla	Н				++	**	
449	Prunus rufa	Т	+		+		*	
450	Rubus burkillii	S	<u> </u>			++	**	
451	Rubus ellipticus	S	25	0	25	++	***	
452	Rubus foliosus	S	+	+	+	++	***	
453	Rubus navus	S	2	0	2		*	

No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
454	Rubus parviflorus	С	2		2		*	
455	Rubus rosifolius	S	+	+	+		*	
90	Rubiaceae							
456	Chassalia curviflora var. ophioxyloides	S	+		+		*	
457	Hedyotis scandens	С	+	+	+		*	
458	Ixora sp.	S	0	6	6		*	
459	Luculia pinceana	S				++	**	
460	Mussaenda incana	S	0	1	1		*	
461	Mussaenda roxburghii	S	+	+	+		*	
462	Mycetia stipulata	S	+		+		*	
463	Ophiorrhiza mungos	S	0	9	9		*	
464	Ophiorrhiza parviflora	S		+	+		*	
465	Paederia foetida	С	+	+	+	++	***	
466	Psychotria monticola	S	114	38	152		*	
467	Rubia sikkimensis	С	6	1	7		*	
468	Rubiaceae shrub (Gardenia?)	S	0	12	12		*	
469	Uncaria pilosa	С	+		+		*	
470	Wenlandia wallichii	S	+		+		*	
91	Rutaceae							
471	Acronychia pedunculata	S	+		+		*	
472	Citrus aurantium	Т				++	**	
473	Citrus limon	Т				++	**	
474	Murraya paniculata	S	+		+	++	***	
475	Toddalia asiatica	С		3	3		*	
476	Zanthoxylum armatum	S	0	2	2	++	***	
92	Sabiaceae							
477	Meliosma simplicifolia	Т	1	0	1		*	
478	Sabia lanceolata	С	+		+		*	
93	Salicaceae							
479	Casearia vareca	Т	4	0	4		*	
480	Populus gamblei	Т	+		+	++	***	
94	Sapindaceae							
481	Acer laurinum	Т	+		+		*	
482	Nephedium sp.	Т	0	4	4		*	
95	Sapotaceae							
483	Diploknema butyraceoides	Т	0	17	17		*	
484	Sarcosperma griffithii	Т				++	**	
96	Saururaceae							
485	Houttuynia cordata	Н	45		45		*	

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
97	Saxifragaceae							
486	Saxifraga sarmentosa var. cuscutiformis	S				++	**	
98	Scrophulariaceae							
487	Lindenbergia indica	Н	+	+	+	++	***	
488	Mazus pumilus	Н	+	+	+	++	***	
99	Simaroubaceae							
489	Ailanthus excelsa	Т	11	0	11		*	
490	Ailanthus integrifolia	Т	+	+	+	++	***	
491	Alangium begoniifolium	Т				++	**	
100	Smilacaceae							
492	Smilax aspera	С	23	10	33	++	***	
493	Smilax lanceifolia	С	+	+	+		*	
494	Smilax glabra	С		3	3		*	
495	Smilax opposifolia	С	10	8	18		*	
496	Smilax perfoliata	С		2	2		*	
497	Smilax petelotii	С		1	1		*	
101	Solanaceae							
498	Datura suaveolens	S		+		++	**	
499	Lycianthes laevis	S		+	+		*	
500	Lycianthes rantonnei	S				++	**	
501	Nicandra physalodes	Н	+		+	++	***	
502	Nicotiana tabaccum	Н	+		+		*	
503	Physalis minima	Н				++	**	
504	Physalis peruviana	Н				++	**	
505	Solanum ciliatum	Н				++	**	
506	Solanum echinatum	Н	13	3	16		*	
507	Solanum indicum	Н	+	+	+	++	***	
508	Solanum nigricans	Н	+	+	+	++	***	
509	Solanum spirale	S	13	4	17		*	
510	Solanum viarum	H				++	**	
102	Staphyleaceae							
511	Turpinia napalensis	С	+	+	+		*	
512	Turpinia pomifera	С	+	+	+		*	
103	Tetramelaceae							
513	Tetrameles nudiflora	Т	+	+	+	++	***	
104	Theaceae							
514	Camilia	S	0	2	2		*	
105	Thymelaeaceae							
515	Edgeworthia gardneri	S	+		+	++	***	

S. No.	Name	Life Form	Dri	Tangon	SAT	Others	CL	CS
106	Urticaceae	1 01111						
516	Boehmeria longifolia	S	0	12	12	++	***	
517	Boehmeria macrophylla	S	7	27	34	++	***	
518	Debregeasia sp.	S	31	11	42		*	
519	Elatostema lineolatum	Н	33	37	70		*	
520	Elatostema platyphyllum	Н	+	+	+		*	
521	Elatostema sessile	Н	23	69	92	++	***	
522	Elatostema sikkimense	S	+	+	+		*	
523	Elatostemma sp.	Н		11	11		*	
524	Girardinia diversifolia	S	+	+	+	++	***	
525	Laportea interrupta	Н	26	20	46		*	
526	Oreocnide frutescens	S	25	5	30		*	
527	Oreocnide pedunculata	S	+	+	+		*	
528	Pilea cordifolia	Н	+	+	+		*	
529	Pilea insolens	Н	10		10		*	
530	Pilea scripta	Н	11	70	81	++	***	
531	Poikilospermum lanceolatum	С	6	42	48		*	
532	Pouzolzia glaberrima	S		3	3	++	***	
533	Pouzolzia frondosa	S	+	+	+		*	
534	Pouzolzia fulgens	Н		7	7	++	***	
535	Urtica dioica	Н	2	0	2		*	
107	Verbenaceae							
536	Clerodendrum colebrookianum	S	1	4	5	++	***	
537	Gmelina arborea	Т				++	**	
538	Pseudocaryopteris foetida	S	+		+		*	
539	Steptobion volubilis	Н	0	1	1		*	
108	Violaceae							
540	Viola betonicifolia	Н				++	**	
541	Viola diffusa	Н		3	3	++	***	
542	Viola hediniana	Н				++	**	
543	Viola flexuosa	Н	+	+	+		*	
544	Viola inconspicua	Н	+	+	+		*	
545	Viola moupinensis	Н	+	+	+		*	
546	Viola thomsonii	Н	+	+	+		*	
547	Viola Pilosa	Н	13	1	14		*	
109	Vitaceae							
548	Cayratia mollissima	С	+	+	+		*	
549	Cayratia trifolia	С		1	1		*	
550	Tetrastigma affine	С	64	70	134		*	

S.	Name	Life	Dri	Tangon	SAT	Others	CL	CS
No.		Form		-				
551	Tetrastigma dubium	С	+		+		*	
552	Tetrastigma obtectum	С		+	+		*	
553	Tetrastigma serrulatum	С		+	+		*	
554	Vitis sp.	С	1		1		*	
555	Vitis flexuosa	С				++	**	
110	Zingiberaceae							
556	Alpinia allughas	Н				++	**	
557	Alpinia malaccensis	Н	9	17	26		*	
558	Alpinia zerumbet	Н				++	**	
559	Curcuma montana	Н				++	**	
560	Globba clarkei	Н	12	24	36	++	***	
561	Hedychium densiflorum	Н				++	**	
562	Hedychium longipedunculatum	Н				++	**	
563	Hedychium spicatum	Н	1	12	13	++	***	

*SAT=Study area total; SS = Secondary Source- Previous study (EIA 2015); Life Form: T – Tree, S- Shrub, C – Climber, H – Herb, G – Grass, B – Bamboo, Sg- Sedge, O – Orchid; CS= Conservation status (IUCN); CL=Cumulative locations; + = Reported in the present study; ++= Reported in previous study; *= Reported only from present study; **=Reported earlier; ***= Reported earlier and in present study.

Annexure 5.2: Gymnosperms reported/recorded in the Etalin HEP study area

S.No.	Name	Dri	Tangon	SAT	Others	CS	CL
1	Cupressaceae						
1	Cupressus torulosa				++		**
2	Gnetaceae						
2	Gnetum montanum		+	+	++		***
3	Pinaceae						
3	Abies densa				++		**
4	Pinus wallichiana				++		**
5	Tsuga dumosa				++		**
6	Pinus merkusii				++		**
4	Тахасеае						
7	Cephalotaxus griffithii				++		**
5	Ephedraceae						
8	Ephedra aspera	+	(11101)	+			*

*SAT=Study area total; OT= Previous study; CS= Conservation status (IUCN); CL=Cumulative locations; + = Reported in the present study; ++= Reported in previous study; *= Reported only from present study; **=Reported earlier; ***= Reported earlier and in present study.

Annexure 5.3: Pteridophytes of Etalin HEP Study Area

S.No.	Name	Dri	Tangon	SAT	Others	CS	CL
1	Adiantaceae						
1	Adiantum caudatum				++		**
2	Adiantum philippense				++		**

S.No.	Name	Dri	Tangon	SAT	Others	CS	CL
2	Angiopteridaceae						
3	Angiopteris evecta				++		**
3	Aspleniaceae	·					
4	Asplenium nidus				++		**
4	Cyatheaceae	•			•		
5	Cyathea gigantea	0	2	2	++		***
6	Cyathea spinulosa	4	0	4	++		***
5	Gleichiaceae	·					<u>.</u>
7	Dicranopteris linearis				++		**
6	Athyriaceae			•	•		
8	Diplazium bentamense				++		**
9	Diplazium sp.	0	8	8			*
7	Polypodiaceae			•	•		4
10	Drymoglossum heterophyllum				++		**
11	Dryoathyrium boryanum				++		**
8	Equisetaceae			1			
12	Equisetum ramossimum	5	4	9	++		***
9	Polypodiaceae	·		1			
13	Arthromeris wallichiana				++		**
14	Lepisorus excavata	0	2	2	++		***
15	Lepisorus sordidus	12	3	15	++		***
16	Lepisorus nudus				++		**
17	Microsorum punctctum				++		**
18	Microsorum pteropus				++		**
19	Polypodium amoenum				++		**
20	Phymatopteris ebenipes	+		+			*
21	Phymatosorus cuspidatus		+	+			*
10	Lycopodiaceae	·			•		
22	Lycopodium clavatum				++		**
11	Nephrolepdaceae	·		•			·
23	Nephrolepis cordifolia				++		**
24	Nephrolepis auriculata	15	0	15			*
12	Aspidiaceae	•		•			
25	Polystichum aculeatum	5	0	5	++		***
13	Thelypteridaceae	·		•			·
26	Pronephrium affine				++		**
14	Dennstaedtiaceae	·					
27	Pteridium aquilinum	4	0	4	++		***
15	Pteridaceae						
28	Pteris quadriaurita				++		**
29	Pteris vittata				++		**
30	Onychium siliculosum		+	+	++		***
16	Selaginellaceae						

S.No.	Name	Dri	Tangon	SAT	Others	CS	CL
31	Selaginella sp.	0	5	5	++		***

*SAT=Study area total; OT= Previous study; CS= Conservation status (IUCN); CL=Cumulative locations; + = Reported in the present study; ++= Reported in previous study; *= Reported only from present study; **=Reported earlier; ***= Reported earlier and in present study.

Annexure 5.4: List of Butterfly species recorded in Etalin HEP Project Study Area

S. No.	Scientific Name	Common Name	Dri	Tangon	Study Area	SS	CL	WPA Status
	Family: Hesperiidae							
1	Caltoris kumara	Blank Swift	-	-	-	+	**	
2	Ctenoptilum vasava vasava Moore, 1865	Tawny Angle	+	-	+	-	*	
3	Hasora chromus chromus Vramer, 1780	Common Banded Awl	+	+	+	-	*	
4	Hasora vitta indica Evans, 1932	Plain Banded Awl	+	+	+	-	*	
5	Notocrypta curvifascia curvifascia Felder and Felder, 1862	Restricted Demon	+	+	+	-	*	
6	Notocrypta curvifascia curvifascia Felder and Felder, 1862	Paint Brush Swift	-	+	+	-	*	
7	Notocrypta feisthamelii alysos Moore, 1865	Himalayan Spotted Demon	+	+	+	-	*	
8	Notocrypta paralysos asawa Fruhstorfer, 1911	Indo Chinese Common Banded Demon	-	+	+	-	*	
9	Tagiades cohaerens cynthia Evans, 1934	Himalayan White-Striped Snow Flat	+	+	+	-	*	
10	Taractrocera maevius	Common Grass Dart	-	-	-	+	**	
	Family: Lycaenidae							
11	Acytolepis puspa gisca Fruhstorfer, 1910	Common Hedge Blue	+	+	+	+	***	
12	Arhopala centaurus	Centaur Oakblue	-	-	-	+	**	
13	Caleta caleta decidia	Angled Pierrot	-	-	-	+	**	
14	Catochrysops strabo strabo Fabricius, 1793	Oriental Forgetmenot	+	+	+	-	*	
15	Celastrina argiolus kollari Westwood, 1852	West Himalayan Hill Hedge Blue	+	+	+	-	*	
16	Chliaria kina kina Hewitson, 1869	Blue Tit	+	+	+	-	*	
17	Curetis acuta dentata Moore, 1879	Angled Sunbeam	+	+	+	-	*	
18	Curetis bulis bulis Westwood, 1851	Bright Sunbeam	+	+	+	-	*	
19	Curetis thetis (Drury, [1773])	Indian Sunbeam	+		+	-	*	
20	Heliophorus brahma Moore, 1857	Golden Sapphire	+	+	+	-	*	
21	Heliophorus epicles indicus	Purple Sapphire	-	-	-	+	**	
22	Heliophorus epicles latilimbata Fruhstorfer, 1908	Eastern Purple Sapphire	+	+	+	-	*	
23	Heliophorus indicus Fruhstorfer, 1908	Dark Sapphire	+	+	+	-	*	

S. No.	Scientific Name	Common Name	Dri	Tangon	Study Area	SS	CL	WPA Status
24	Heliophorus moorei tytleri Riley, 1929	Naga Azure Sapphire	+	-	+	-	*	
25	Heliophorus oda Hewitson, 1865	Eastern Blue Sapphire	+	+	+	-	*	
26	Heliophorus tamu Kollar, 1844	Himalayan Powdery Green Sapphire	+	+	+	-	*	
27	Jamides bochus bochus Stoll, 1782	Dark Cerulean	+	+	+	+	***	
28	Jamides caeruleus caeruleus Druce, 1873	Oriental Royal Cerulean	+	-	+	-	*	
29	Jamides celeno Cramer, 1775	Common Cerulean	+	+	+	+	***	
30	Lampides boeticus Linnaeus, 1767	Peablue	+	+	+	+	***	
31	Lampides kankena	Glistening cerulean	-	-	-	+	**	
32	Loxura atymnus continentalis Fruhstorfer, 1912	Yamfly	+	+	+	-	*	
33	Lycaena phlaeas	Small Copper	-	-	-	+	**	
34	Nacaduba beroe gythion Fruhstorfer, 1916	Six Lineblue	+	-	+	-	*	
35	Nacaduba dubiosa indica Evans, 1925	Tailless Lineblue	+	-	+	-	*	
36	Nacaduba helicon	Pointed Lineblue	-	-	-	+	**	
37	Neptis hylas varmona Moore, 1872	Common Sailer	+	+	+	+	***	
38	Orthomiella pontis pontis Elwes, 1887	Straightwing Blue	+	+	+	-	*	
39	Prosotas nora ardates Moore, 1874	Common Lineblue	+	+	+	-	*	
40	Pseudozizeeria maha maha Kollar, 1844	Pale Grass Blue	+	+	+	-	*	
41	Rapala maena schistacea Moore, 1879	Slate Flash	+	-	+	-	*	
42	Rapala nissa ranta Swinhoe, 1897	Jaintia Common Flash	+	-	+	-	*	
43	Rapala pheretima petosiris Hewitson, 1863	Indian Copper Flash	+	-	+	-	*	
44	Symbrenthia hypselis cotanda Moore, 1874	Spotted Jester	+	+	+	-	*	
45	Symbrenthia lilaea khasiana Moore, 1874	Common Jester	+	+	+	-	*	
46	Tarucus Ananda	Dark Pierrot	-	-	-	+	**	
47	Udara albocaeruleus albocaeruleus Moore, 1879	Himalayan Albocerulean	+	+	+	+	***	
48	Udara dilecta dilecta Moore, 1879	Pale Hedge Blue	+	-	+	+	***	
49	Yasoda tripunctata tripunctata Hewitson, 1863	Branded Yamfly	+	+	+	-	*	
50	Zizina otis otis Fabricius, 1787	Lesser Grass Blue	-	+	+	-	*	
	Family: Nymphalidae							
51	Aglais cashmirensis aesis Fruhstorfer, 1912	Indian Tortoiseshell	+	+	+	-	*	

S. No.	Scientific Name	Common Name	Dri	Tangon	Study Area	SS	CL	WPA Status
52	Apatura ambica ambica Kollar, 1844	Indian Purple Emperor	+	+	+	-	*	
53	Argynnis hyperbius hyperbius Linnaeus, 1763	Indian Fritillery	+	+	+	+	***	
54	Athyma cama cama Moore, 1857	Orange Staff Sergeant	+	+	+	-	*	
55	Athyma orientalis Elwes, 1888	Elongated Sergeant	+	+	+	-	*	
56	Athyma perius perius Linnaeus, 1758	Common Sergeant	+	+	+	-	*	
57	Athyma zeroca zeroca Moore, 1872	Khasi Small Staff Sergeant	+	+	+	-	*	
58	Auzakia danava Moore, 1857	Indian Commodore	+	+	+	-	*	
59	Calinaga sp.	Freak	+	+	+	-	*	
60	Callerebia narasingha narasingha Moore, 1857	Himalayan Mottled Argus	+	-	+	-	*	
61	Cethosia biblis tisamena Fruhstorfer, 1912	Himalayan Lacewing	+	+	+	-	*	
62	Charaxes dolon dolon Westwood, 1848	Himalayan Stately Nawab	+	+	+	-	*	
63	Charaxes eudamippus eudamippus Doubleday, 1843	Great Nawab	+	+	+	-	*	
64	Charaxes moori Distant, 1883	Malayan Nawab	-	+	+	-	*	
65	Cirrochroa aoris aoris Doubleday, 1847	Large Yeoman	+	-	+	+	***	
66	Cirrochroa tyche mithila Moore, 1872	Common Yeoman	+	+	+	-	*	
67	Cyretis thyodamas thyodamas Boisduval, 1836	Common Map	+	+	+	+	***	
68	Elymnias malelas malelas Hewitson, 1863	Spotted Palmfly	+	+	+	-	*	
69	Elymnias vasudeva Moore, 1857	Jezebel Palmfly	-	+	+	-	*	
70	Euploea core core Cramer, 1780	Indian Common Crow	+	+	+	-	*	
71	Euploea crameri nicevillei	Spotted Black Crow	+	+	+	-	*	Sch 1 Part 4
72	Euploea midamus rogenhoferi Felder and Felder, 1865	Spotted Blue Crow	+	+	+	-	*	
73	Euploea mulciber mulciber Cramer, 1777	Striped Blue Crow	+	+	+	-	*	
74	Euploea sylvester hopei Felder and Felder, 1865	Double Banded Crow	+	-	+	-	*	
75	Euploea tulliolus	Dwarf Crow	-	-	-	+	**	
76	Euthalia franciae franciae Gray, 1846	French Duke	+	+	+	-	*	
77	Euthalia phemius phemius Doubleday, 1848	Sylhet White-Edged Blue Baron	+	+	+	-	*	
78	Herona marathus marathus Doubleday, 1848	Pasha	+		+	-	*	
79	Hestina persimilis	Siren	-	-	-	+	**	
80	Hestinalis nama nama Doubleday, 1844	Circe	+	+	+	+	***	

S. No.	Scientific Name	Common Name	Dri	Tangon	Study Area	SS	CL	WPA Status
81	Junonia iphita iphita Cramer, 1779	Chocolate Pansy	+	+	+	-	*	
82	Junonia oithya Linnaeus, 1758	Blue Pansy	+	-	+	-	*	
83	Kallima inachus inachus Boisduval, 1836	Orange Oakleaf	+	+	+	+	***	
84	Kaniska canace canace Linnaeus, 1763	Blue Admiral	+	+	+	-	*	
85	Lethe confusa confusa Aurivillius, 1898	Banded Treebrown	+	+	+	-	*	
86	Lethe mekara mekara Moore, 1857	Common Red Forester	+	-	+	-	*	
87	Lethe rohria rohria Fabricius, 1787	Common Treebrown	+	+	+	-	*	
88	Libythea lepitalepita Moore, 1857	Common Beak	+	+	+	-	*	
89	Libythea myrrha sanguinalis Fruhstorfer, 1898	Ochreous Club Beak	+	+	+	+	***	
90	Mycalesis francisca albofasciata Tytler, 1914	Manipur Lilacine Bush Brown	+	+	+	-	*	
91	Neptis mahendra mahendra Moore, 1872	West Himalayan Sailer	+	-	+	-	*	
92	Neptis miah miah Moore, 1857	East Himalayan Small Yellow Sailer	-	+	+	-	*	
93	Neptis namba namba Tytler, 1915	Namba Sailer	+	+	+	-	*	
94	Neptis pseudovikasi Moore, 1899	False Dingy Sailor	-	+	+	-	*	
95	Neptis sankara amba Moore, 1858	Broad Banded Sailer	+	+	+	-	*	
96	Neptis sappho astola Moore, 1872	Himalayan Rusty Sailer/Pallas's Sailer	-	+	+	-	*	
97	Neptis soma soma Moore, 1858	Creamy Sailer	+	+	+	-	*	
98	Pantoporia hordonia hordonia Stoll, 1790	Common Lascar	-	+	+	-	*	
99	Papilio helenus helenus Linnaeus, 1758	Red Helen	+	+	+	-	*	
100	Papilio paris paris Linnaeus, 1758	Paris Peacock	+	+	+	+	***	
101	Papilio polytes romulus Cramer, 1775	Common Mormon	+	+	+	-	*	
102	Parantica aglea melanoides Moore, 1883	Glassy Tiger	+	+	+	-	*	
103	Parantica agleoides	Dark- glassy Tiger	-	-	-	+	**	
104	Parantica melaneus plataniston Fruhstorfer, 1910	Chocolate Tiger	+	+	+	-	*	
105	Parantica sita sita Kollar, 1844	Himalayan Chestnut Tiger	+	+	+	-	*	
106	Parasarpa dudu dudu Westwood, 1850	White Commodore	+	+	+	-	*	
107	Precis hierta	Yellow Pansy	-	-	-	+	**	
108	Precis iphita iphita	Chocolate Soldier	-	-	-	+	**	
109	Precis lemonias	Lemon Pansy	-	-	-	+	**	

S. No.	Scientific Name	Common Name	Dri	Tangon	Study Area	SS	CL	WPA Status
110	Pseudergolis wedah wedah Kollar, 1844	Tabby	+	+	+	-	*	
111	Rohana parisatis parisatis Westwood, 1850	Black Prince	+	+	+	+	***	
112	Stibochiona nicea nicea Gray, 1846	Popinjay	+	+	+	-	*	
113	Sumalia daraxa daraxa Doubleday, 1848	Green Commodore	+	+	+	-	*	
114	Symbrenthia niphanda niphanda Moore, 1872	Bluetail Jester	+	+	+	-	*	
115	Symbrenthia silana de Nicéville, 1885	Scarce Jester	+	+	+	-	*	Sch 1 Part 4
116	Tirumala septentrionis septentrionis Fruhstorfer, 1899	Oriental Dark Blue Tiger	+	+	+	-	*	
117	Vanessa cardui Linnaeus, 1758	Painted Lady	+	+	+	-	*	
118	Vanessa indica indica Herbst, 1794	Indian Red Admiral	+	+	+	-	*	
119	Ypthima asterope mahratta Moore, 1884	Common Threering	+	-	+	+	***	
120	Ypthima hubneri Kirby, 1871	Common Fourring	+	-	+	-	*	
121	Ypthima newara	Large Three-Ring	-	-	-	+	**	
122	Ypthima sakra sakra Moore, 1857	Himalayan Fivering	+	+	+	-	*	
	Family: Papilionidae							
123	Appias lalage lalage Doubleday, 1842	Spot Puffin	+	+	+	-	*	
124	Atrophaneura varuna astorion Westwood, 1842	Common Batwing	+	+	+	-	*	
125	Byasa dasarada dasarada Moore, 1857	Great Windmill	+	-	+	-	*	
126	Byasa polyeuctes polyeuctes Doubleday, 1842	Common Windmill	+	+	+	-	*	
127	Catopsilia pomona crocale Fabricius, 1775	Common Emigrant	+	+	+	-	*	
128	Colias fieldii fieldii Menetries, 1855	Dark Clouded Yellow	+	-	+	-	*	
129	Gandaca harina assamica Moore, 1906	Tree Yellow	+	+	+	-	*	
130	Gonepteryx rhamni nepalensis Doubleday, 1847	Himalayan Brimstone	+	-	+	-	*	
131	Graphium agetes agetes Westwood, 1843	Fourbar Swordtail	+	+	+	+	***	
132	Graphium antiphates pompilius Fabricius, 1787	Fivebar Swordtail	+	+	+	-	*	
133	Graphium chironides chironides Honrath, 1884	Veined Jay	+	-	+	-	*	
134	Graphium cloanthus cloanthus Westwood, 1841	Glassy Bluebottle	+	+	+	-	*	
135	Graphium doson axion Felder and Felder, 1864	Common Jay	+	-	+	-	*	
136	Graphium eurous sikkimica	East Himalayan Six Bar	+	+	+	-	*	

S. No.	Scientific Name	Common Name	Dri	Tangon	Study Area	SS	CL	WPA Status
	Heron, 1899	Swordtail						
137	Graphium macareus indicus Rothschild, 1895	Lesser Zebra	+	+	+	-	*	
138	Graphium megarus megarus Westwood, 1844	Assam Spotted Zebra	+	+	+	-	*	
139	Graphium sarpedon sarpedon Linnaeus, 1758	Common Bluebottle	+	+	+	+	***	
140	Lamproptera curius curius Fabricius, 1787	White Dragontail	+	+	+	-	*	
141	Lamproptera meges indistincta Tytler, 192	Green Dragontail	+	+	+	-	*	
142	Papilio agestor agestor Gray, 1831	Tawny Mime	+	+	+	-	*	
143	Papilio alcmenor alcmenor C and R Felder, 1864	Redbreast	+	-	+	+	***	
144	Papilio crino Fabricius, 1793	Common Banded Peacock	+	-	+	-	*	
145	Papilio epycides Hewitson, 1862	Lesser Mime	+	+	+	-	*	
146	Papilio memnon agenor Linnaeus, 1758	Great Mormon	+	+	+	+	***	
147	Papilio nephelus chaon Westwod, 1845	Yellow Helen	+	-	+	-	*	
148	Papilio protenor euprotenor Fruhstorfer, 1908	Himalayan Spangle	+	-	+	-	*	
149	Pieris brassicae nepalensis Doubleday, 1846	Large Cabbage White	-	+	+	-	*	
150	Pieris canidia indica Evans, 1926	Indian Cabbage White	+	+	+	+	***	
151	Prioneris thestylis thestylis Doubleday, 1842	Spotted Sawtooth	+	-	+	+	***	
152	Troides aeacus aeacus Felder and Felder, 1860	Golden Birdwing	+	-	+	-	*	
153	Troides helena cerberus Felder and Felder, 1865	Common Birdwing	+	+	+	-	*	
	Family: Pieridae							
154	Abisara neophron neophron Hewitson, 1861	Tailed Judy	+	+	+	-	*	
155	Appias albina darada Felder & Felder, 1865	Sylhet Common Albatross	+	+	+	-	*	
156	Appias indra indra Moore, 1857	Plain Puffin	+	+	+	-	*	
157	Appias lyncida eleonora Boisduval, 1836	Indo Chinese Chocolate Albatross	+	+	+	-	*	
158	Catopsilia pyranthe pyranthe Linnaeus, 1758	Mottled Emigrant	+	-	+	+	***	
159	Delias acalis pyramus Wallace, 1867	Red Breast Jezebel	+	+	+	+	***	
160	Cepora nadina nadina Lucas, 1852	Lesser Gull	+	+	+	-	*	
161	Delias belladonna ithiela Butler, 1869	Hill Jezebel	+	+	+	-	*	
162	Delias descombesi	Redspot Jezebel	-	-	-	+	**	

S. No.	Scientific Name	Common Name	Dri	Tangon	Study Area	SS	CL	WPA Status
163	Delias hyparete	Painted Jezebel	-	-	-	+	**	
164	Delias samaca Moore, 1857	Pale Jezebel	+	+	+		*	Sch 1 Part 4
165	Dercas lycoris lycoris	Plain Sulphur	-	-	-	+	**	
166	Dercas verhuelli doubledayi Moore, 1905	Tailed Sulphur	+		+	-	*	
167	Dodona adonira adonira Hewitson, 1865	Striped Punch	+	+	+	-	*	
168	Dodona dipoea dipoea Hewitson, 1865	Lesser Punch	+	+	+	-	*	
169	Eurema andersonii Moore, 1886	Sikkim One-Spot Grass Yellow	+		+	-	*	
170	lxias pyrene	Yellow Orangetip	-	-	-	+	**	
171	Pareronia hippia Fabricius, 1787	Common Wanderer	+	+	+	-	*	
172	Pareronia sp	Dark Wanderer	-	+	+	-	*	
173	Pieris rapae meleager Hemming, 1934	Small Cabbage White	-	+	+	-	*	
	Family: Riodinidae							
174	Abisara fylla Westwood, 1851	Dark Judy	+	+	+	-	*	
175	Dodona durga durga Kollar, 1844	Common Punch	+	+	+	-	*	
176	Dodona eugenes venox Fruhstorfer, 1912	Tailed Punch	+	+	+	-	*	
177	Dodona ouida phlegra Fruhstorfer, 1914	West Himalayan Mixed Punch	+	+	+	-	*	
178	Stiboges nymphidia nymphidia Butler, 1876	Malayan Columbine	+	+	+	-	*	
179	Zemeros flegyas flegyas Cramer, 1780	Punchinello	+	+	+	+	***	

SS – Secondary Source (EIA Study 2016); CL – Cumulative List : * Species recorded only during this study, ** species reported exclusively from SS, *** Species common to both present study and secondary source, WPA 1072 – Wildlife Protection Act : Schedule I - IV

Annexure 5.5: List of Odonate species record	ded in Etalin HEP Project Study Area
--	--------------------------------------

S.	Scientific Name	Common Name	Dri	Tangon	Study
No.					Area
	Family: Libellulidae				
1	Orthetrum triangulare Selys, 1878	Blue-Tailed Forest Hawk	*	*	*
2	Crocothemis servilia Drury, 1770	Scarlet Skimmer	*		*
3	Orthetrum glaucum Brauer, 1865	Blue Marsh Hawk	*	*	*
4	Orthetrum pruinosum Burmeister,	Crimson-tailed Marsh	*	*	*
	1839	Hawk			
5	Orthetrum taeniolatum Schneider,	Taeniolate Marsh Hawk	*		*
	1845				
6	Trithemis festiva Rambur, 1842	Black Stream Glider	*	*	*
7	Pantala flavescens Fabricius, 1798	Wandering glider	*		*
8	Orthetrum chrysis Selys, 1891	Brown Backed Marsh	*		*
		Hawk			
9	Orthetrum sabina Drury, 1770	Green marsh hawk	*	*	*
	Family: Calicnemiinae				

S. No.	Scientific Name	Common Name	Dri	Tangon	Study Area
10	Calicnemia miniata Selys, 1886		*		*
11	Calicnemia sp 2		*		*

Annexure 5.6: List of Spider species recorded in Etalin HEP Project Study Area

S. No.	Family / Genus	Species	Dri	Tangon	Study Area
	Agaelenidae C. L. Koch, 1837				
1	Tamgrinia	sp 1	*	*	*
2	Tegenaria	sp1	*	*	*
	Araneidae Clerck, 1757				
3	Larinia	sp 1		*	*
4	Herennia	punctata	*		*
5	Cyrtophora	citricola	*	*	*
6	-	unicolor	*		*
7	Neoscona	sp 1	*	*	*
8	Plebs	himalayensis	*	*	*
9	Araneus	mitificus	*	*	*
10		multipunctata	*	*	*
11	Gasteracantha	unguifera	*		*
12	Cyclosa	sp 1	*	*	*
13		hexatuberculata	*		*
14	-	spirifera	*	*	*
15	-	fissicanda		*	*
16	Argiope	catenulata	*		*
17		aemula	*	*	*
18		pulchella		*	*
19		sp 1		*	*
20	Anepsion	sp 1	*		*
21	Gea	spinipes	*	*	*
22	Chorizopes	bengalensis		*	*
23	- '	sp 1		*	*
24	Eriovixia	excelsa	*		*
25		laglaizei		*	*
26	Thelacantha	bravispina	*	*	*
27	Zygiella	sp 1		*	*
	Clubionidae Wagner, 1887				
28	Clubiona	shillonghensis	1	*	*
29	1	filicata	*		*
30	1	hysgina	1	*	*
	Corrinidae Karsch, 1880				
31	Cambalida	sp 1	*		*
32	Orthobula	sp 1		*	*
33	Castianeira	zeta	1	*	*
	Eutrichuridae Lehtinen, 1967				
34	Chericanthium	sp 1	*	*	*
35	Gen 1	sp 1		*	*

S. No.	Family / Genus	Species	Dri	Tangon	Study Area
	Filistatidae Ausserer, 1867				
36	Pritha	sp 1	*	*	*
	Gnaphosidae Pocock, 1898				
37	Zelotes	sp 1		*	*
	Hahniidae Bertkau, 1878				
38	Hahnius	sp 1	*	*	*
	Hersiliidae Thorell, 1870				
39	Hersilia	sp 1	*	*	*
	Linyphiidae Blackwall, 1859				
40	Linyphia	triangularis	*	*	*
41	Plectembolus	sp 1	*	*	*
42		sp 2	*	*	*
43	Neriene	sp 1	*	*	*
44	Lepthyphantes	sp 1	*	*	*
	Liocranidae Simon, 1897				
45	Gen 1	sp 1		*	*
	Lycosidae Sundevall, 1833				
46	Lycosa	himalayensis	*	*	*
47	Pardosa	sumatrana	*	*	*
48		birmanica	*	*	*
	Mimetidae Simon, 1881				
49	Mimetus	sp 1	*	*	*
	Miturgidae Simon, 1886				
50	Gen 1	sp 1		*	*
	Oonopidae Simon, 1890				
51	Gen 1	sp 1	*		*
	Oxyopidae Thorell, 1870				
52	Oxyopes	sp 1	*	*	*
	Pholcidae C. L. Koch, 1850				
53	Pholcus	affinis CNF.		*	*
54	Artema	sp 1	*	*	*
	Pisauridae Simon, 1890				
55	Dendrolycosa	sp 1	*	*	*
	Psechridae Simon, 1890				
56	Psechrus	sp 1	*	*	*
	Salticidae Blackwall, 1841				
57	Phintella	sp 1	*	*	*
58	Plexippus	paykulli	*	*	*
59		sp 1	*	*	*
60	Yaginumaella	sp 1		*	*
61	Carrhotus	sp 1	*	*	*
62	Thiania	sp 1	*	*	*
63	Telamonia	sp 1		*	*
64	Asemonea	tenuipes	*	*	*
65	Chrysilla	sp1		*	*
66	Rhene	albigena		*	*

S. No.	Family / Genus	Species	Dri	Tangon	Study Area
67	Aerullius	sp 1		*	*
68	Hyllus	semicupreus	*	*	*
69		sp 1		*	*
70	Pristobaeus	sp 1		*	*
71	Siler	semiglaucus		*	*
72	-	sp 1		*	*
73	Brettus	sp 1		*	*
74	Menemerus	sp 1	*		*
75	-	natalis CNF	*		*
76	Portia	fimbriata			*
77	-	sp1		*	*
78	Thyene	sp 1			*
79	Myrmarachne	sp 1	*		*
80	Epocilla	sp 1		*	*
	Sparassidae Bertkau, 1872				
81	Bhutaniella	kronestedti	*		*
82	Olios	sp 1	*	*	*
83		sp 2	*		*
84	Heteropoda	sp 1	*	*	*
85		promota		*	*
00	Tetragnathidae Menge, 1866				
86	Leucauge	sp 1		*	*
87		celebesiana	*	*	*
88	-	decorata	*	*	*
89	Mesida	culta	*	*	*
90	Tetragnatha	sp 1	*	*	*
91	Opademeta	sp 1		*	*
	Theridiidae Sundevall, 1833				
92	Phoroncidia	Sp 1		*	*
93	Episinus CNF	sp 1	*		*
94	Theridion	sp 1	*	*	*
95	Meotipa	sp 1		*	*
96	Theridula	sp 1	*		*
97	Thwaitsia	sp 1	*	*	*
98		sp 2		*	*
99	Parasteatoda	sp 1		*	*
100	Achaeranea	sp 1		*	*
	Thomisidae Sundevall, 1833				
101	Ozyptila	khasi		*	*
102	Misumenops	sp 1	*	*	*
102	Dieta	sp 1		1	*
100	Xysticus	croceus	*	*	*
105	Camaricus	sp 1	*	*	*
105	Misumena	sp 1		*	*
100	Indoxysticus	sp 1	*	*	*

S. No.	Family / Genus	Species	Dri	Tangon	Study Area
108	Oxytate	sp 1		*	*
109	Thomisus	sp 1		*	*
110	Synema	decoratum	*		*
	Uloboridae Thorell, 1869				
111	Uloborus	krishnae	*		*
112		sp 1	*		*
113	Miagrammopes	sp 1	*	*	*

Annexure 5.7: List of Moth Species recorded from Base Camp

S. No.	Scientific Name	Common Name
	Brahmaeidae	
1	Brahmaea hearseyi White, 1862	Pale Brahmid Moth
	Drepanidae	-
2	Macrocilix maia (Leech, 1888)	-
3	Callidrepana patrana (Moore, [1866])	-
	Erebidae	
4	Nyctemera arctata Walker, 1856	-
5	Areas galactina orientalis	-
6	Cyana puer (Elwes, 1890)	-
7	Lymantria concolor	-
8	Gen 1	-
9	Eudocima sp 1	-
10	Euproctis sp1	-
11	Gen sp 2	-
12	Spilosoma sp.	-
	Geometridae	
13	Hypomecis transcissa (Walker, 1860)	-
14	Dysphania militaris Linnaeus, 1758	-
15	Antipercnia belluaria (Guenée, [1858])	-
16	Comostola laesaria (Walker, 1861)	-
17	Hypomecis cineracea (Moore, 1888)	-
18	Percnia felinaria Guenée, 1857	-
19	Thalassodes sp1	-
20	Vindusara sp 1	-
21	Thallasodes sp2	-
22	Hypomecis sp1	-
23	Cleora sp1	-
24	Sirinopteryx rufivinctata Walker, 1862	-
25	Chiasmia sp1	-
26	Abraxas sp 1	-
27	Biston sp1	-
28	Dalima lucens CF.	-
29	Alcis sp.	-
30	Comostola sp.	-
31	Krananda sp.	-
32	Scopula sp.	-
33	Xandrames sp.	-
	Lasiocampidae	
34	Trabala vishnou (Lefèbvre, 1827)	Vishnu Lappet Moth; Rose Myrtle Lappet Moth

S. No.	Scientific Name	Common Name
	Saturniidae	-
35	Actias parasinensis Brechlin, 2009	Western Chinese Moon Moth
36	Samia canningii (Hutton, 1860)	Wild Eri Silk Moth
37	Saturnia anna Moore, [1865]	Yellow-spotted Emperor Moth
38	Actias selene (Hübner, [1807])	Indian Moon Moth
39	Loepa sp.	-
40	Antheraea mylitta (Drury, 1773)	-
	Uraniidae	
41	<i>Lyssa zampa</i> (Butler, 1869)	Giant Uraniid Swallowtail
42	Pseudomicronia advocataria (Walker, 1861)	-
	Zygaenidae	
43	Corma maculata Hampson, 1892	-
	Crambidae	
44	Endocrossis flavibasalis (Moore, 1867)	-
45	Cotachena pubescens	-
	Eupterotidae	
46	Eupterote pandya (Moore, [1866])	-
	Noctuidae	
47	Episteme sp.	-
	Sphingidae	
48	Cechetra lineosa (Walker, 1856)	Striped Green Hawkmoth
49	Cechetra scotti (Rothschild, 1920)	Scott's Green Hawkmoth
50	Eupanacra sinuate	-
51	Theretra sp.	-

Annexure 5.8: List of Amphibians and Reptiles recorded in the Etalin HEP Study Area

S.No	Family / Scientific Name	Groups/ Common Name	Dri	Tangon	SAT	CS
Α	AMPHIBIANS					
1	Bufonidae	Toads				
1	Duttaphrynus melanostictus	Common Asian Toad	*	*	*	LC
2	Duttaphrynus cf. stuarti	Stuart's Toad		*	*	DD
2	Dicroglossidae	Aquatic Frog				
3	Euyphlyctis cyanophlytis	Indian Skipping Frog	*	*	*	DD
4	Hoplobatrachus tigerinus	Indian Bull Frog	*		*	LC
5	Hoplobatrachus crassus	Jerdon's Bull Frog	*		*	LC
6	Occidozyga borealis	Northern Trickle Frog	*	*	*	
3	Megophryidae	Horned Frog				
7	Megophrys cf. major	Asian Horned Frog	*		*	LC
4	Ranidae	Ranid Frog				
8	Amolops assamensis	Assamese Cascade Frog		*	*	DD
9	Clinotarsus alticola	Point-nose Frog	*	*	*	LC
5	Rhacophoridae	Tree Frog				
10	Raorchestes sp	Bush Frog		*	*	
11	Feihyhyla vittatus	Two striped pigmy tree Frog	*		*	LC
12	Polypedates teraiensis	Common Tree Frog	*	*	*	
13	Rhacophorus maximus	Large Tree Frog	*	*	*	LC
6	Microhylidae	Pigmy Frog				
14	Microhyla berdmorei	Burmese pigmy frog		*	*	LC
В	REPTILES					
1	Agamidae	Agamid Lizards				
1	Calotes jerdoni	Jerdon's Forest Calotes	*		*	

S.	No	Family / Scientific Name	Groups/ Common Name	Dri	Tangon	SAT	CS
	2	Japalura cf. andersoniana	Mountain Lizard	*	*	*	
2		Scincidae	Skinks				
	3	Eutropis macularia	Bronze Grass Skink	*	*	*	
	4	Eutropis multifasciata	Many-lined Grass Skink	*	*	*	
	5	Asymblepharus sp.		*	*	*	
	6	Sphenomorphus indicus	Himalayan Litter Skink	*	*	*	
	7	Sphenomorphus maculatus	Spotted Litter Skink		*	*	
3		Varanidae	Monitor Lizard				
	8	Varanus bengalensis	Bengal Monitor Lizard	*		*	LC/ Sch-
4		Boidae	Python				'
	9	Python bivittatus	Burmese Python	*	*	*	VU/ Sch-
5		Colubridae	Non-Venomous Snakes				
	10	Pareas monticola	Assam Snail Eater	*	*	*	
	11	Gonyosoma frenatum	Green Trinket Snake	*		*	
	12	Orthriophis taeniura	Striped Trinket Snake /	*	*	*	
		yunannanensis	Yunnan Striped Trinket				
			Snake				
	13	Coelognathus radiatus	Copper-headed Trinket Snake	*		*	LC
	14	Oligodon albocinctus	White-barred Kukri Snake	*	*	*	
	15	Dendrelaphis proarchos	Painted bronzeback	*	*	*	
	16	Lycodon laoensis	Laotian Wolf Snake	*		*	
	17	Lycodon aulicus	Common Wolf Snake		*	*	
	18	Ptyas korros	Indo Chinese Rat Snake	*	*	*	
	19	Ptyas nigromarginata	Green Rat Snake		*	*	
	20	Rhabdophis himalayanus	Himalayan Keelback	*	*	*	
	21	Rhabdops bicolor	Bicolor Snake	*		*	
	22	Pseudoxenodon macrops	False Cobra	*	*	*	LC
	23	Boiga cyanea	Green Cat Snake		*	*	
	24	Boiga gokool	Eastern Cat Snake	*	*	*	
	25	Boiga siamensis	Siamese cat snake	*	1	*	
	26	Psammodynastes pulverulentus	Mock Viper	*	*	*	
6		Elapidae	Venomous Snakes				
	27	Bungarus fasciatus	Banded Krait	*	*	*	LC
	28	Bungarus niger	Black Krait	*		*	10
	20	Naja kaouthia	Monocled cobra	*	*	*	LC
	30	Ophiophagus hannah	King Cobra	+	*	*	VU
7	00	Viperidae					v0
	31	Popeia popeiorum	Popes pit viper	*	*	*	LC
	51		i ohea hir vihei				LU

Annexure 5.9: List of	Birds recorded and	d reported a	s part	of Eta	lin HE	P Stu	dy Aı	rea

S.No	Family/Scientific Name	English Name	MS	FG	DR	TR	С	SA	CL	CS
1	Accipitridae									
1	Gyps himalayensis	Himalayan Vulture	SV	С		1		1	*	
2	Milvus migrans	Black Kite	R	С		1		1	*	
3	Pernis ptilorhynchus	Oriental Honey Buzzard	SV	С		1		1	*	
4	Spilornis cheela	Crested Serpent Eagle	R	С	7	6		13	***	
5	Ictinaetus malaiensis	Black Eagle	R	С	5			5	*	

S.No	Family/Scientific Name	English Name	MS	FG	DR	TR	С	SA	CL	CS
6	Aquila fasciata	Bonelli's Eagle	SV	С		1		1	*	
7	Hieraaetus pennatus	Booted Eagle	SV	С		1		1	*	
8	Accipiter trivirgatus	Crested Goshawk	SV	С		1		1	*	Sch-I
9	Accipiter badius	Shikra	WV	С		2	2	4	*	Sch-I
10	Accipiter nisus	Eurasian Sparrowhawk	WV	С	1			1	*	Sch-I
2	Aegithalidae		•							
11	Aegithalos concinnus	Black-throated Tit	R	Ι	6	4		10	*	
12	Aegithalos iouschistos	Black-browed Tit	SV	Ι		1		1	*	
3	Alcedinidae		•	•						
13	Megaceryle lugubris	Crested Kingfisher	R	Р		1		1	*	
14	Halcyon smyrnensis	White-throated Kingfisher	SV	Р		2		2	*	
15	Halcyon pileata	Black-capped Kingfisher	SV	Р		3		3	*	
4	Apodidae	· · · · · ·	•	,						
16	Hirundapus caudacutus	White-throated Needletail	SV		1	2		3	*	
17	Aerodramus brevirostris	Himalayan Swiftlet	WV		3	3		6	***	
18	Apus pacificus	Pacific Swift	SV			2		2	*	
19	Apus affinis nipalensis	Indian House Swift	SV			1		1	*	
5	Ardeidae		•	,						
20	Ardeola bacchus	Chinese Pond Heron	SV	Р		3		3	*	
21	Bubulcus ibis	Cattle Egret	SV			2		2	*	
6	Bucerotidae		•	,						
22	Buceros bicornis	Great Hornbill							**	Sch-I
7	Campephagidae		1	1	1		1			
23	Pericrocotus solaris	Grey-chinned Minivet	R		6	11	2	19	*	
24	Pericrocotus ethologus	Long-tailed Minivet	R			4		4	***	
25	Pericrocotus flammeus	Scarlet Minivet	R			1		1	*	
8	Cinclidae		1		1					
26	Cinclus pallasii	Brown Dipper	R		1	4	3	8	***	
9	Cisticolidae			1	1		1			
27	Prinia crinigera	Striated Prinia	SV		2			2	*	
28	Prinia atrogularis	Hill Prinia	SV		1			1	*	
29	Prinia flaviventris	Yellow-bellied Prinia	SV			-		0	*	
40	Orthotomus sutorius	Common Tailorbird						0	**	
10	Columbidae		1	1	1		1			
41	Streptopelia orientalis	Oriental Turtle Dove	SV	G		2		2	*	
42	Streptopelia	Red Collared Dove	SV	G	1	3	1	3	*	
	tranquebarica									
43	Chalcophaps indica	Emerald Dove	SV	G	1			1	*	
44	Treron sphenurus	Wedge-tailed Green Pigeon	SV	F		3		3	*	
11	Corvidae									
45	Dendrocitta formosae	Grey Treepie	R	0	9	16	3	28	***	
46	Dendrocitta frontalis	Collared Treepie	SV	0		1		1	*	
47	Cissa chinensis	Common Green Magpie	R	0	1	5		6	*	
48	Corvus macrorhynchos	Large-billed Crow	WV	0		1		1	*	
12	Cuculidae	-								
49	Centropus sinensis	Greater coucal		Ι					**	
50	Chrysococcyx maculatus	Asian Emerald Cuckoo	SV			2		2	*	
51	Chrysococcyx	Violet Cuckoo	SV			1		1	*	
	xanthorhynchus									
52	Cacomantis merulinus	Plaintive Cuckoo	SV	I		1		1	*	
53	Surniculus dicruroides	Drongo Cuckoo	SV	Ι		1		1	*	

S.No	Family/Scientific Name	English Name	MS	FG	DR	TR	С	SA	CL	CS
54	Hierococcyx	Large Hawk Cuckoo	SV		1			1	*	
	sparverioides	-								
55	Hierococcyx nisicolor	Whistling Hawk Cuckoo	SV			1		1	*	
56	Cuculus micropterus	Indian Cuckoo	SV		1	1		2	*	
57	Cuculus saturatus	Himalayan Cuckoo	SV		1	1		2	*	
58	Cuculus poliocephalus	Lesser Cuckoo	SV			1		1	*	
13	Dicaeidae									
59	Dicaeum minullum	Plain Flowerpecker	WV	Ν	1	4		5	*	
60	Dicaeum ignipectus	Fire-breasted Flowerpecker	R	Ν	1	4	1	6	*	
14	Dicruridae									
61	Dicrurus macrocercus	Black Drongo	SV	I		1		1	***	
62	Dicrurus leucophaeus	Ashy Drongo	R	I	8	16	2	26	*	
63	Dicrurus annectens	Crow-billed Drongo	SV	I		1		1	*	
64	Dicrurus aeneus	Bronzed Drongo	R		2	6		8	***	
65	Dicrurus hottentottus	Hair-crested Drongo	SV		3	9	1	13	*	
15	Emberizidae									
66	Emberzia lathami	Crested Bunting		G	1			1	*	
67	Emberzia pusilla	Little Bunting S		G		1		1	*	
16	Estrildidae									
68	Lonchura punctulata	Scaly-breasted Munia	WV	G		4		4	***	
17	Falconidae									
69	Falco tinnunculus	Common Kestrel	WV	С		1		1	*	
70	Falco severus	Oriental Hobby	WV	С		1		1	*	
18	Fringillidae									
71	Carpodacus erythrinus	Common Rosefinch	WV	G		2		2	*	
72	Haematospiza sipahi	Scarlet Finch	WV	G		1		1	*	
73	Pyrrhoplectes epauletta	Gold-naped Finch	WV	G	2			2	*	
19	Hirundinidae									
74	Delichon nipalense	Nepal House Martin	R			4		4	*	
75	Riparia chinensis	Grey throated sand Martin	R					0	*	
76	Cecropis daurica	Red-rumped Swallow	WV			4		4	*	
20	Indicatoridae									
77	Indicator xanthonotus	Yellow-rumped Honeyguide	SV						*	
21	Irenidae									
78	Irena puella	Asian Fairy-bluebird	SV			1		1	*	
79	Chloropsis hardwickii	Orange-bellied Leafbird	R	0	20	38	4	62	***	
22	Laniidae									
80	Lanius cristatus	Brown Shrike	SV			2		2	*	
81	Lanius tephronotus	Grey-backed Shrike	SV			3		3	*	
23	Leiothrichidae									
82	Cutia nipalensis	Cutia	WV	Ι	1			1	*	
83	Garrulax striata	Striated Laughingthrush	R			2		2	*	
84	Garrulax leucolophus	White-crested	R		4	16	1	21	***	
		Laughingthrush								
85	Garrulax caerulatus	Grey-sided Laughingthrush	WV			2		2	*	
86	Garrulax ruficollis	Rufous-necked	WV			1		1	*	
		Laughingthrush								
87	Garrulax variegatum	Variegated Laughingthrush	WV						*	
88	Garrulax affine	Black-faced Laughingthrush	WV						*	
89	Garrulax rufogularis	Rufous-chinned	WV	Ι		2		2	*	
	Laughingthrush									

S.No	Family/Scientific Name	English Name	MS	FG	DR	TR	С	SA	CL	CS
90	Trochalopteron	Chestnut-crowned	R			2		2	*	
	erythrocephalum	Laughingthrush								
91	Leiothrix argentauris	Silver-eared Mesia	R		2	5		7	*	
92	Leiothrix lutea	Red-billed Leiothrix	WV						*	
93	Minla ignotincta	Red-tailed Minla	R		1	3		4	*	
94	Liocichla phoenicea	Red-faced Liocichla	SV						*	
95	Actinodura nipalensis	Hoary-throated Barwing	R		3	1		4	*	
96	Chrysominla strigula	Chestnut-tailed Minla	SV	I		2		2	*	
97	Actinodura egertoni	Rusty-fronted Barwing	SV			2		2	*	
24	Locustellidae		•	•						
98	Locustella luteoventris	Brown Bush Warbler	SV						*	
99	Locustella thoracica	Spotted Bush Warbler	SV						*	
100	Megalurus palustris	Striated Grassbird	SV		2	6		8	*	
25	Motacillidae	I	1	1	1	1	1	1		
101	Anthus hodgsoni	Olive-backed Pipit	WV		1	3		4	***	
102	Motacilla flava	Western Yellow Wagtail	SV				1	1	*	
103	Motacilla cinerea	Grey Wagtail	SV		1	2		3	***	
104	Motacilla citreola	Citrine Wagtail	WV	i		2		2	*	
105	Motacilla alba	White Wagtail	WV			8		8	***	
26	Muscicapidae					•		•		
106	Copsychus saularis	Oriental Magpie Robin	SV			2		2	*	
107	Muscicapa sibirica	Dark-sided Flycatcher	SV		1	1		2	*	
108	Muscicapa ferruginea	Ferruginous Flycatcher	SV	1	1	2		3	*	
109	Cyornis rubeculoides	Blue-throated Flycatcher	SV			-			*	
110	Anthipes monileger	White-gorgeted Flycatcher	SV			1		1	*	
111	Eumyias thalassinus	Verditer Flycatcher	R		1	4		5	*	
112	Ficedula westermanni	Little pied Flycatcher							**	
113	Ficedula albicilla	Taiga Flycatcher	SV			1		1	*	
114	Ficedula tricolor	Slaty-blue Flycatcher	SV	· 		2		2	*	
115	Niltava sundara	Rufous-bellied Niltava	R			1		1	*	
116	Niltava grandis	Large Niltava	R			2		2	*	
117	Niltava macgrigoriae	Small Niltava	SV	1		1		1	*	
118	Brachypteryx hyperythra	Rusty-bellied Shortwing	SV			1			*	
119	Larvivora brunnea	Indian Blue Robin	SV						*	
120	Myiomela leucura	White-tailed Robin	SV			1		1	*	
120	Tarsiger indicus	White-browed Bush Robin	SV			1		1	*	
121	Tarsiger chrysaeus	Golden Bush Robin	W			1		1	*	
122	Tarsiger rufilatus	Himalayan Bush Robin	WV			2		2	*	
123	Tarsiger hyperythrus	Rufous-breasted Bush Robin	WV			17	3	20	*	
124	Saxicola ferreus	Grey Bushchat	SV			2	5	20	*	
125	Enicurus scouleri	Little Forktail	WV			1		1	***	
120	Enicurus scoulen Enicurus immaculatus	Black-backed Forktail	WV			2		2	*	
127	Enicurus schistaceus	Slaty-backed Forktail	R			9	2	11	*	
120	Enicurus maculatus	· · ·	WV			3	<u> </u>	3	***	
129	Adelura frontalis	Spotted Forktail Blue-fronted Redstart	WV			3		3	*	
130	Rhyacornis fuliginosa	Plumbeous Water Redstart	R		4	8	3	15	***	
131	Chaimarrornis		R		4	0	3	15	***	
152		White-capped Water Redstart	R					2		
133	leucocephalus Phoenicurus hodgsoni	Hodgson's Redstart	WV	1		4	1	5	***	
133		· · ·	WV			4		0 1	*	
	Phoenicurus ochruros	Black Redstart				•	1	<u> </u>	*	
135	Phoenicurus auroreus	Daurian Redstart	WV			3	1	4		

S.No	Family/Scientific Name	English Name	MS	FG	DR	TR	С	SA	CL	CS
136	Phoenicurus	Güldenstädt White-winged	WV				1	1	*	
	erythrogastrus	Redstart								
137	Myophonus caeruleus	Blue Whistling Thrush	R	0	18	32	9	59	***	
138	Monticola rufiventris	Chestnut-bellied Rock Thrush	R	0		2		2	*	
139	Monticola solitarius	Blue rockthrush		0					**	
27	Nectariniidae									4
140	Arachnothera magna	Streaked Spiderhunter	R	Ν	17	28		45	*	
141	Aethopyga saturata	Black-throated Sunbird	R	Ν	16	7	-	23	*	
142	Aethopyga nipalensis	Green-tailed Sunbird	R	N	3	5	1	9	*	1
143	Aethopyga gouldiae	Mrs Gould's Sunbird	WV	N			1	1	*	
28	Oriolidae									_1
144	Oriolus traillii	Maroon Oriole	SV	0	1	4		5	*	
29	Paridae		•	-				•		.I
145	Melanochlora sultanea	Sultan Tit	WV	1		1		1	*	
146	Parus monticolus	Green-backed Tit	WV	i	2	1		3	***	
147	Parus spilonotus	Yellow-cheeked Tit	WV	i	-	4		4	*	
30	Passeridae		***			т		т		1
148	Passer montanus	Eurasian Tree Sparrow	R	G	2	5		7	***	1
31	Pellorneidae		IX.	0	2	0		1		<u> </u>
149	Malacocincla abbotti	Abbott's Babbler	SV	1					*	
150	Trichastoma tickelli	Buff-breasted Babbler	SV			1		1	*	
150	Schoeniparus rufogularis	Rufous-throated Fulvetta	R			2		2	*	
152	Schoeniparus cinereus	Yellow-throated Fulvetta	R		1	2		1	*	
152	Schoeniparus	Rufous-winged Fulvetta	WV			2		2	*	
100	castaneceps	Tulous-winged Tulvella	vvv	'		2		2		
154	Alcippe nipalensis	Nepal Tit Babbler	R	1					*	
32	Phalacrocoracidae									1
156	Microcarbo niger	Little Cormorant	WV	Р	1	4	2	7	*	1
157	Phalacrocorax fuscicollis	Indian Cormorant	WV	P	- '	2		2	*	
158	Phalacrocorax carbo	Great Cormorant	WV	P	2	2	2	4	*	
33	Phasianidae	Sleat Solihorant	***		2		2	т		
159	Arborophila torqueola	Common Hill Partridge	R	G	3			3	*	1
160	Arborophila rufogularis	Rufous-throated Hill	SV	G	2			2	*	
		Partridge			2					
161	Polyplectron bicalcaratum	Grey Peacock Pheasant	WV	0		2		2	*	Sch-I
162	Lophura leucomelanos	Kalij Pheasant	R	0	10	11		21	*	
34	Phylloscopidae									
163	Phyloscopus chloronotus	Lemon-rumped Warbler	WV	Ι	2	5		7	*	
164	Phyloscopus maculipennis	Ashy-throated Warbler	WV	I		2		2	*	
165	Phylloscopus fuscatus	Dusky Warbler	SV						*	
166	Phylloscopus affinis	Tickell's Leaf Warbler	WV		4	1		5	*	
167	Phylloscopus Intermedius	White-spectacled Warbler	WV	I	1	3		4	*	
168	Phylloscopus poliogenys	Grey-cheeked Warbler	R	1	2	2		4	*	1
169	Phylloscopus	Grey-crowned Warbler	R	i	-	1		1	*	1
	tephrocephalus									<u> </u>
170	Phylloscopus whistleri	Whistler's Warbler	WV						*	
171	Phylloscopus castaniceps	Chestnut-crowned Warbler	SV		2			2	*	

S.No	Family/Scientific Name	English Name	MS	FG	DR	TR	С	SA	CL	CS
172	Phylloscopus trochiloides	Greenish Leaf Warbler	SV	I		1		1	*	
173	Phylloscopus magnirostris	Large-billed Leaf Warbler	SV	I					*	
174	Phylloscopus cantator	Yellow-vented Leaf Warbler	SV		4	7		11	*	
175	Phylloscopus reguloides	Blyth's Leaf Warbler	WV			1		1	*	
176	Phylloscopus	Grey-hooded Leaf Warbler	R		2	8		10	*	
	xanthoschistos									
35	Picidae		•							
177	Picumnus innominatus	Speckled Piculet	WV	I					*	
178	Dendrocopos	Grey-capped Pygmy	WV	I		1		1	*	
	canicapillus	Woodpecker								
179	Gecinulus grantia	Pale-headed Woodpecker	WV			2		2	*	
180	Micropternus brachyurus	Rufous Woodpecker	SV		2			2	*	
181	Blythipicus pyrrhotis	Bay Woodpecker	SV			1		1	*	
182	Dendrocopos	Darjeeling Pied Woodpecker	SV						*	
	darjellensis									
183	Picus canus	Grey-headed Woodpecker	WV		2	3		5	*	
184	Chrysophlegma	Greater Yellow-naped	R			1		1	*	
	flavinucha	Woodpecker								
185	Picus chlorolophus	Lesser Yellow-naped Woodpecker	R	I	1	3		4	*	
36	Pnoepygidae	·	-							
186	Pnoepyga pusilla	Pygmy Wren Babbler	SV	I	1			1	*	
37	Prunellidae		-							
187	Prunella strophiata	Rufous-breasted Accentor	WV	I		2		2	*	
38	Pycnonotidae	·	-							
188	Alophoixus flaveolus	White-throated Bulbul	SV	0	1	2		3	*	
189	Ixos mcclellandii	Mountain Bulbul	R	0	1			1	*	
190	Hypsipetes	Black Bulbul	R	F	8	18		26	***	
	leucocephalus									
191	Pycnonotus jocosus	Red-whiskered Bulbul	WV	0	14	3		17	***	
192	Pycnonotus leucogenys	Himalayan Bulbul	SV	0		2		2	*	
193	Pycnonotus cafer	Red-vented Bulbul	SV	0		2		2	***	
39	Rallidae								-	
194	Amaurornis phoenicurus	White-breasted Waterhen	WV	0		1		1	*	
40	Ramphastidae			-				-		
195	Psilopogon virens	Great Barbet	R	F	20	14		34	*	
196	Psilopogon asiaticus	Blue throated barbet		F					**	
197	Psilopogon lineatus	Lineated Barbet	SV	F	2	3	1	6	*	
198	Psilopogon franklinii	Golden-throated Barbet	SV	F	3			3	*	
41	Rhipiduridae	1		1					I	
199	Rhipidura albicollis	White-throated Fantail	WV			2		2	*	
42	1			1				1	I	
200	Numenius arquata	Eurasian Curlew	WV				1	1	*	
43	Scotocercidae		1	1	,			1		
201	Tesia olivea	Slaty-bellied Tesia	SV			5		5	*	
202	Tesia cyaniventer	Grey-bellied Tesia	SV						*	
203	Cettia castaneocoronata	Chestnut-headed Tesia	SV						*	
204	Cettia major	Chestnut-crowned Bush S Warbler				1		1	*	
205	Cettia brunnifrons	Grey-sided Bush Warbler	SV						*	

S.No	Family/Scientific Name	English Name	MS	FG	DR	TR	С	SA	CL	CS
206	Hemitesia pallidipes	Pale-footed Bush Warbler	R				-		*	
207	Cettia fortipes	Brownish-flanked Bush	R	l i					*	
201	eetta tohipee	Warbler		.						
208	Abroscopus albogularis	Rufous-faced Warbler	R			1		1	*	
209	Abroscopus schisticeps	Black-faced Warbler	WV			1		1	*	
44	Sittidae		1		1					L
210	Sitta himalayensis	White-tailed Nuthatch	WV						*	1
211	Sitta frontalis	Velvet-fronted Nuthatch	WV			-			*	
212	Tichodroma muraria	Wallcreeper	WV			-			*	
45	Stenostiridae			1	1		1	1	1	<u>ı</u>
213	Chelidorhynx	Yellow-bellied Fairy-fantail	WV		16	38	7	61	***	1
	hypoxanthus						-			
214	Culicicapa ceylonensis	Grey-headed Canary- flycatcher	SV	I	2			2	*	
46	Strigidae								1	
215	Glaucidium brodiei	Collared Owlet	WV	С		1		1	*	
216	Glaucidium cuculoides	Asian Barred Owlet	WV	C	1	4		4	*	
217	Otus spilocephalus	Mountain Scops Owl	R	C		2		2	*	1
218	Otus bakkamoena	Collared Scops Owl	WV	C		1		1	*	
47	Sturnidae				1		I			<u> </u>
219	Acridotheres tristis	Common Myna		0					**	
220	Sturnia malabarica	Chestnut-tailed Starling	SV	0		1		1	*	
48	Sylviidae				1		1		1	<u>I</u>
221	Myzornis pyrrhoura	Fire-tailed Myzornis	R		5	8		13	*	1
222	Paradoxornis guttaticollis	Spot-breasted Parrotbill	SV	0	-				*	
223	Psittiparus ruficeps	Greater Rufous-headed Parrotbill	WV	0	3	5		8	*	
224	Suthora fulvifrons	Fulvous Parrotbill	SV	0					*	
225	Suthora nipalensis	Black-throated Parrotbill	R	0	2			2	*	1
226	Chleuasicus	Lesser Rufous-headed	SV	0	3			3	*	1
	atrosuperciliaris	Parrotbill			Ū					
49	Timaliidae		1		1		1		1	1
227	Pomatorhinus ruficollis	Streak-breasted Scimitar Babbler	SV	0					*	
228	Stachyris nigriceps	Grey-throated Babbler	SV	0					*	
229	Sphenocichla humei	Wedge-billed Babbler	SV			2		2	*	
230	Cyanoderma chrysaeum	Golden Babbler	R		2	5		7	*	<u> </u>
231	Cyanoderma ruficeps	Rufous-capped Babbler	R		3	8		11	*	<u> </u>
232	Mixornis gularis	Striped Tit Babbler	SV						*	
50	Troglodytidae								1	
233	Troglodytes	Eurasian Wren	SV						*	
51	Trogonidae								1	
234	Harpactes	Red-headed Trogon	WV			2		2	***	
	erythrocephalus									
235	Harpactes wardi	Ward's Trogon	WV			1		1	*	
52	Turdidae									
236	Turdus eunomus	Dusky Thrush	SV	0					*	
53	Upupidae	· •	·	-	•		•	-		
237	Upupa epops	Common Hoopoe	SV			4		4	*	
54	Vangidae		•	•				•		
238	Hemipus picatus	Bar-winged Flycatcher- shrike	WV	I	3			3	*	

S.No	Family/Scientific Name	English Name	MS	FG	DR	TR	С	SA	CL	CS
55	Vireonidae	· · ·	-							
239	Pteruthius aeralatus	Blyth's Shrike-babbler	SV	Ι					*	
240	Pteruthius melanotis	Black-eared Shrike-babbler	WV			1	2	3	*	
241	Erpornis zantholeuca	White-bellied Erpornis	R						*	
56	Zosteropidae									
242	Yuhina castaniceps	Striated Yuhina	WV		5	1		6	*	
243	Yuhina nigrimenta	Black-chinned Yuhina	R			1		1	*	
244	Yuhina gularis	Stripe-throated Yuhina	WV			2		2	*	
245	Yuhina flavicollis	Whiskered Yuhina	WV		3	2		5	*	
246	Yuhina occipitalis	Rufous-vented Yuhina	SV				2	2	*	
247	Yuhina bakeri	White-naped Yuhina	R	Ι	6	15	3	24	*	
248	Zosterops palpebrosus	Oriental White-eye	SV	Ι	3	8		11	*	

MS – Migratory Status: R – Resident, SV – Summer Visitor, WV – Winter Visitor; FG – Foraging Guild : C – Carnivore, F – Frugivore, G -Granivore, I – Insectivore, N – Nectarivore, O- Omnivore, P – Piscivore; DR – Dri River Limb, TR – Tangon River Limb, C – Confluence Area, SA- Study Area Total, CL – Cumulative list : * recorded only in this study, ** reported from existing information / Secondary Source, *** reported from both (present study & Secondary Source; CS – Conservation Status : Indian Wildlife Protection Act 1972 – Sch- I – Schedule I

Annexure 5.10: Overall possible Cumulative List and Conservstion Status of Mammal Species in Etalin HEP Study Area

S.No	Family	Common	Р	resent S	tudy – WI	l 2018	SS	CL	Conse	ervation
	Scientific Name	Name	MSCT	Socia	l Survey	Overall Study List			Sta	atus
				PJA	OPJA				IUCN	WPA
1	Ailuridae									
1	Ailurus fulgens	Red Panda			~				En	I
2	Bovidae									
2	Capricornis thar	Himalayan Serow	✓	~		~		*	NT	I
3	Naemorhedus baileyi	Red Goral			~				Vu	III
4	Budorcas taxicolor	Mishmi Takin			~				Vu	I
5	Bos frontalis	Mithun	✓	~		~	√	***		
3	Canidae									
6	Cuon alpinus	Indian Wild Dog	✓	~		~	~	***	En	II
4	Cercopithecidae									
7	Macaca assamensis	Assam Macaque	✓	√		~		*	NT	Sch II
5	Cervidae									

S.No	Family			SS	CL	Conse	rvation			
	Scientific Name	Name	MSCT	Socia	I Survey	Overall Study List			St	atus
				PJA	OPJA				IUCN	WPA
8	Muntiacus gongshanensis	Gongshan Muntjac	~	~		~		*	DD	
9	Muntiacus muntjac	Indian Muntjac	~	√		~	~	***	LC	III
6	Falidae									
10	Panthera tigris	Bengal Tiger			~				En	I
11	Panthera pardus	Common Leopard			~				Vu	Ι
12	Panthera uncia	Snow Leopard			~				Vu	I
13	Neofelis nebulosa	Clouded Leopard			~				Vu	Ι
14	Pardofelis marmorata	Marbled Cat		√		×		*	NT	Ι
15	Catopuma temmincki	Asiatic Golden Cat	~	√				*	NT	Ι
16	Prionailurus bengalensis	Leopard Cat	~	~				*	LC	Ι
7	Herpestidae									
17	Herpestes auropunctatus	Small Indian Mongoose	~			×	~	***	LC	II
8	Hystricidae									
18	Aherurus marcourus	Brush-tailed Porcupine	~	√		✓		*	LC	II
9	Manidae									
19	Manis pentadactyla	Chinese Pangolin	~			✓		*	Cr	Ι
10	Moschidae									
20	Moschus chrysogaster	Alpine Musk Deer			~				En	Ι
11	Muridae									
21	Rattus nitidus	Himalayan Field Rat	~			✓	~	***	LC	IV
12	Mustelidae									

S.No	Family	Common			study – WI		SS	CL		ervation
	Scientific Name	Name	MSCT	Socia	I Survey	Overall Study List			Sta	atus
				PJA	OPJA				IUCN	WPA
22	Martes flavigula	Yellow - throated Marten	~	~		V		*	LC	II
23	Lutrogale perspicillata	Smooth- coated Otter	~	~		V		*	Vu	II
24	Lutra	Eurasian Otter		~		 ✓ 		*	NT	II
25	Mustela strigidorsa	Black-striped Weasel			~				LC	
13	Ochotonidae									
26	Ochotona macrotis	Large-eared Pika			~				LC	
14	Prionodontidae									
27	Prionodon pardicolor	Spotted Linsang		~		~		*	LC	I
15	Sciuridae									
28	Ratufa bicolor	Black Giant Squirrel	~	√		~		*	NT	II
29	Callosciurus pygerythrus	Hoary-bellied Squirrel	~			~	~	***	LC	
30	Dremomys Iokriah	Orange-bellied Squirrel		√		~		*	LC	
31	Callosciurus erythraeus	Pallas's Squirrel	~	√		~		*	LC	
32	Tamiops macclellandi	Himalayan Striped Squirrel	~	~		✓ 	~	***	LC	
33	Petaurista philippensis	Indian Giant Flying Squirrel		~		~		*	LC	II
16	Soricidae									
34	Crocidura attenuate	Asian Grey Shrew	~			~		*	LC	
35	Soriculus nigrescens	Himalayan Large-clawed Shrew			~				LC	
17	Suidae									

S.No	Family	Common	Р	resent S	Study – WI	I 2018	SS	CL	Conse	rvation
	Scientific Name	Name	MSCT	Socia	I Survey	Overall Study List			Sta	atus
				PJA	OPJA	,			IUCN	WPA
36	Sus scrofa	Indian Wild Pig	\checkmark	✓		~	~	***	LC	
18	Talpidae									
37	Parascaptor leucura	White-tailed Mole			v				LC	IV
18	Ursidae									
38	Ursus thibetanus	Himalayan Black Bear	\checkmark	√		~	~	***	Vu	II
19	Vespertilionidae									
39	Eptesicus hottentotus	Long-tailed House Bat					~	**	LC	
40	Eptesicus spp.	Bat (un id)	\checkmark						?	
20	Viverridae									
41	Paguma larvata	Himalayan Palm Civet	~	~		~		*	LC	II
42	Viverra zibetha	Large Indian Civet					~	**	LC	II
	Total Species	<u> </u>	22	22	12		11			
	1				34	27		29		

MSCT - Species reported present mammal survey, PJA – Project Area : species reported present social Survey, OPJA – Outside Project Area : species reported from upper reaches – social survey, SS – Species listed from Secondary Source : listed & sighted in EIA 2015; IUCN Red List - EN –Endangered, VU- Vulnerable, LC-Least Concerned, NT- Near Threatened, WPA – Wildlife Protection Act 1972 : Schedule I & II

Wildlife Conservation Plan

ETALIN HEP

Annexure 5.11: Fish Species found in the Etalin HEP Study Area with their Migration Pattern

Fish Name	Mishmi	English Name	Common	Sensitive to	Feeding	Potential	Flow T	Position	Migratory Habit
	Name		Habitat	Habitat Change	Habit	Breeding Time	I olerance (m ³ /s)	in Water Column	
Aborichthys sp	Aekabru	Loach	Riffle-Pool	Highly sensitive	Insectivore	May-June	1 to 3	Bottom	Short distance
Creteuchiloglanis arunachalensis	Ayupipa	Catfish	Riffle-Pool	Highly sensitive	Insectivore	May-June	1 to 2	Bottom	Short distance
Exostoma labiatum	Ayu	Burmese catfish	Riffle-Pool	Highly sensitive	Insectivore	May-June	1 to 2	Bottom	Short distance
Garra kempi	Apaapa	Kempi garra	Run- Pool	Low	Algivore	April-May	1 to 2	Bottom	Short distance
Garra magnidiscus	Apappa	Garra	Run- Pool	Low	Algivore	April-May	0 to 1	Bottom	Short distance
Parachiloglanis bhutanensis	Ayu	Bhutan catfish	Cascade- riffle	Highly sensitive	Insectivore	June	0 to 1	Bottom	Short distance
Pseudecheneis sulcate	Awopa	Sucker throat catfish	Cascade- riffle	Moderate	Insectivore	June	0 to 1	Bottom	Short distance
Psilorhychus arunachalensis	Ayumbo	Mountain carp	Cascade- riffle	Highly sensitive	Insectivore	May-June	0 to 1	Bottom	Short distance
Schizothorax progastus	Anga	Dinnawah snow trout	Run-pool	Moderate	Omnivore	September- October	0 to 3	Mid	Long stance
Schizothorax richardsonii	Anga	Common snow trout	Run-pool	Highly sensitive	Herbivore	March-May & Sept-Oct	0 to 3	Mid	Long stance
Schistura sp	Aekabru	Loach	Riffle-pool	Moderate	Insectivore	May-June	0 to 1	Bottom	Short distance
Tor sp	Abro	Mahseer	Run-pool	Highly sensitive	Omnivore	May-June	0 to 1	Mid	Long stance

272

are based on primary data i.e. flow values ranged from 0 to 3 m³/s in each segment during the study period.

		Anini Circle / Dri limb		
S.No.	PAVs	No of Household Census- 2011	PAF	PAFs Surveyed
1.	Punli	19	31	17
2.	Ayeso	1	6	1
3.	Akobe	11	23	8
4.	Yuron	23	10	3
5.	Apayee	-	11	0
6.	Aguli	8	10	5
7.	Matuli	4	0	8
8.	Kaduli	12	0	8
9.	Imuli	3	0	2
	Total	81	91	52

Annexure 5.12 a: Household details of Anini Circle / Dri Limb

PAVs: Project Affected Villages, PAFs: project Affected Families.

Annexure 5.12 b: Household Details of Etalin Circle/ Tangon Limb

		Etalin Circle / Tangon limb		
S.No.	PAVs	No of Household Census-2011	PAF	PAFs Surveyed
1.	Etalin HQ	64	42	34
2.	Etalin Bridge Point	41	62	34
3.	New Aropo	16	16	12
4.	Emuli	13	7	0
5.	Punli	4	5	3
6.	Aruli	11	19	12
7.	Athunli	11	25	11
8.	Edili*	1	1	1
9.	Aunli	5	10	6
10.	Apunli	6	4	0
11.	Aliwu	-	3	1
12	Atyi	3	8	4
13	Azuli	-	2	2
14	Amuchi**	3	0	4
15	Maayi ***	-	0	3
	Total	179	203	127

* In list of PAFs (Social Impact Assessment and Resettlement & Rehabilitation (R & R) Plan of EHEP Project, January 2015) combined list of PAFs of Athunli & Edili is prepared. ** In list of PAFs (Social Impact Assessment and Resettlement & Rehabilitation (R & R) Plan of EHEP Project, January 2015) combined list of PAFs of Aruli & Amuchi is prepared. *** In list of PAFs (Social Impact Assessment and Resettlement & Rehabilitation (R & R) Plan of EHEP Project, January 2015) combined list of PAFs of Etalin HQ & Maayi is prepared

	ldu (local)	Common	Found of	Durmana of Humbin r	Conservat	ion Status
S.No.	Name	Name	Found at	Purpose of Hunting	IUCN	WPA
1	Manjo	Barking Deer	PA	Consumption of Meat; hide used as carpet	LC	
2	Manjoimbo	Gongshan Munjtac	PA & H-al	Consumption of Meat, hide used as carpet	DD	
3	Ahu	Asiatic Himalayan Black Bear	PA	Consumption of Meat, Commercial (Selling of Gall Bladder), Raiding of Crops	Vu	Sch – II
4	Ma(r)ye	Himalayan Serow	PA	Consumption of Meat	NT	Sch – I
5	Aprupu	Wild Dog	PA	Cattle Lifting	En	Sch – II
6	Akoko	Yellow throated Marten	PA	Poultry Lifting	LC	
7	Achango	Leopard Cat	PA	Poultry Lifting	LC	
8	Ami	Red Goral	H-al	Consumption of meat, hide used as carpet	Vu	
9	Ala	Alpine Musk Deer	H-al	Consumption of meat, Commercial (Sell of Musk Pod)	En	Sch – I
10	Amme	Wild Pig	PA	Consumption of Meat, Raiding of Crops	LC	Sch – III
11	Ameh	Macaque	PA	Consumption of Meat, Raiding of Crops	En	Sch – II
12	Awkru	Mishmi Takin	WM – L -al	Consumption of Meat	Vu	Sch – I
13	Katoh	Spotted Linsang	PA	Consumption of Meat	LC	Sch – I
14	Amra	Tiger	H-al	Taboo; Tiger is not hunted as it is considered as next to human kin	En	Sch – I
15	Kichi duru	Common Leopard	H-al	Taboo	Vu	Sch – I
16	Kichi mano	Snow Leopard	H-al	Taboo	Vu	Sch – I
17	Kichi aruyi	Clouded Leopard	H-al	Taboo	Vu	Sch – I
18	Agri	Red Giant Flying Squirrel	PA	Consumption of Meat	LC	

Annexure 5.13: List of Mammals Hunted, their purpose and Distribution

0.1	ldu (local)	Common	E a sur d'a t	Democratic	Conservat	ion Status
S.No.	Name	Name	Found at	Purpose of Hunting	IUCN	WPA
19	Арі	Himalayan Palm Civet	PA	Consumption of Meat	LC	Sch – II
20	Aiminjini	Red Panda	H-al	Consumption of Meat	En	Sch – I
21	Awroga	Smooth Coated Otter	PA	Consumption of Meat, skin	Vu	Sch – II
22	Awro	Eurasian Otter	PA	Consumption of Meat, skin	NT	
23	Ali	Brush Tailed Porcupine	PA	Consumption of Meat	LC	Sch – II
24	Etophu	Black Giant Squirrel	PA	Consumption of Meat	NT	
25	Adashumbo	Palla's Squirrel	PA	Consumption of Meat	LC	
26	Adaka	Himalayan Striped Squirrel	PA	Consumption of Meat	LC	
27	Anoche	Orange Bellied Squirrel	PA	Consumption of Meat	LC	
28	Asha	Large Eared Pika	H-al	Consumption of Meat	LC	
29	Apibu	Himalayan Large Clawed Shrew	PA	Consumption of Meat	LC	
30	Kamney	Indian Giant Flying Squirrel	PA	Consumption of Meat	LC	

PA - animal found in and around the project area. H-al – animals found in High altitude forests, WM-L al – Winter migrant to Lower altitude.

S.No.	lo. Idu (local) Common Name		Found at	Conserva	ation Status
5.NO.	Name	Common Name	Found at	IUCN	WPA
1	Prabana	Banded Bay Cuckoo	PA	LC	Sch-IV
2	Praho	Lesser Racket Tailed Drongo	PA	LC	Sch-IV
3	Poko	Orange Breasted Green Pigeon	PA	LC	Sch-IV
4	Puku	white Crested Laughing Thrush	PA	LC	Sch-IV
5	Egiku	Blue Winged Laughing Thrush	PA	LC	Sch-IV
6	Pramayo	White Naped Yuhina	PA	LC	
7	Prakre	Stripe Throated Yuhina	PA	LC	
8	Paita	Blue Whistling Thrush	PA	LC	Sch-IV
9	Prowo	Rufous Breasted Bush Robin	PA	LC	
10	Paiba	Chestnut Breasted Partridge	PA	Vu	Sch-IV
11	Dikhi	Crested Serpent Eagle			
12	Poko	Green Imperial Pigeon	mperial Pigeon PA		Sch-IV
13	Ekomi	Wedge Tailed Green Pigeon	ed Green Pigeon PA		Sch-IV
14	Pidi	Himalayan Monal H-al		LC	Sch-I
15	Puthu	Rufous necked Hornbill	Rufous necked Hornbill PA		Sch-I
16	Aro	Kalij Pheasant	PA	LC	Sch-I
17	Peba eche	Sclater's Monal	H-al	Vu	Sch-I
18	Peba ala	Temminck's Tragopan	H-al	LC	Sch-I
19	Chenda	Blood Pheasant	H-al	LC	Sch-I
21	Perah	Hill Partridge	PA	LC	Sch-IV
22	Pando meya	Common Hoopoe	PA	LC	
23	Eshwu	Fulvous Breasted Woodpecker	PA	LC	Sch-IV
24	Prakarya	Large Billed Crow	PA	LC	Sch-IV
25	Pratha	Black Bulbul	PA	LC	Sch-IV
26	Pratha	Square Tailed Bulbul	PA	LC	Sch-IV
27	Aechopo	Scaly Breasted wren-babbler	PA	LC	Sch-IV
28	Tiji	Winter Wren	PA	LC	Sch-IV
29	Pala	Plain Martin	PA	LC	
30	Prayi	Spotted forktail	PA	LC	
31	Protoh	Rufous Bellied Niltava	PA	LC	
32	Praiee	Streaked Spider Hunter	PA	LC	

S.No.	ldu (local)	Common Name	Found at	Conserva	tion Status
5.110.	Name	Common Name	Found at	IUCN	WPA
33	Pokoh	Rufous throated Partridge	PA	LC	Sch-IV
34	Dohoyo	Oriental Honey Buzzard	PA	LC	
35	Pushu	Common lora	PA	LC	
36	Pudu	Brown Shrike	PA	LC	
37	Praho	Greater Racket Tailed Drongo	PA	LC	Sch-IV
38	Prauuh	Black Drongo	PA	LC	Sch-IV
39	Pamayo	Great Tit	PA	LC	Sch-IV
40	Arunje	Himalayan Wedge Billed Babbler	PA	LC	Sch-IV
41	Peka	Long Tailed Sibia	PA	LC	Sch-IV
42	Pudu	Spot Breasted Parrotbill	PA	LC	Sch-IV

Source: Field Survey

Annexure 7.1. Dominants Tree, Shrub and Climber species suggested for Afforestation Programme

S.No.	Top IVI Tree species	S.No	Top PVI Shrub species	S.No	Top PVI Climber Species
1	Castonopsis indica	1	Psychotria monticola	1	Rhaphitophora decursiva
2	Engelhardtia spicata	2	Piper pedicellatum	2	Tetrastigma affine
3	Macaranga denticulata	3	Strobilanthes sp.	3	Piper clerki
4	Lithocarpus pachyphyllus	4	Rhynchotechum ellipticum	4	Smilax sp.
5	Ficus semicordata	5	Oreocnide sp.	5	Clematis acuminata
6	Diploknema butyraceoides	6	Rubus ellipticus	6	Stephania sp.
7	Ostodes paniculata	7	Phlocanthus curviflorus	7	Periploca calophylla
8	Lithocarpus fenestratus	8	Laportea sp.	8	Milletia pachycoyea
9	Castanopsis tribuloides	9	Boehmeria macrophylla	9	Piper sp 3.
10	Litsea cubeba	10	Sambucus hookeri	10	Piper sylvertica
11	Bischofia javanica	11	Chloranthus elatior	11	Rhaphidophora hookeri
12	Kydia calycina	12	Debregeasia sp.	12	Poilokospermum Ianceolatum
13	Terminalia myocarpa	13	Boehmeria longifolia	13	Piper sp 4.
14		14	Solanum spirale	14	Piper sp 1
15				15	Piper rhytidocarpun

S.No.	Top IVI Tree species	S.No	Top PVI Shrub species	S.No	Top PVI Climber Species
16				16	Embilya floribunda
17				17	Steptoleleon volabulis
18				18	Acacia pennata
Total	13 Species		14 Species		18 Species
Total r	no. of Plant Species Recon	nmende	d 45 species		

Annexure 7.2. List of plant species suggested for Green Shelterbelt – Phyto- remediation

S. No.	Name of the Species	Habit	S Sp	Ad Sp	S. No.	Name of the Species	Habit	S Sp	Ad Sp
1	Ailanthus excels	Tree	*		25	Ficus cuneata	Tree		+
2	Ailanthus integrifolia	Tree		+	26	Ficus cyrtophylla	Tree		+
3	Albizia chinensis	Tree	*		27	Ficus heterophylla	Tree		+
4	Albizia procera		*		28	Ficus hookeriana	Tree		+
5	Alnus nepalensis	Tree		+	29	Ficus lacor	Tree		+
6	Alnus nitida	Tree	*		30	Ficus semicordata	Tree	*	
7	Artocarpus chama	Tree		+	31	Garcinia cowa	Tree		+
8	Bambusa balacoa	Tree		+	32	Garcinia elliptica	Tree		+
9	Bambusa pallid	Tree		+	33	Lagerstroemia parviflora	lora Tree		
10	Bambusa tulda	Tree		+	34	Mallotus philippensis Tre		*	
11	Bauhinia ovatifolia	Tree		+	35	Mangifera sylvatica	Tree		+
12	Bauhinia purpurea	Shrub	*		36	Murraya paniculata	Shrub	*	
13	Bischofia javanica	Tree	*		37	Pinus khosiono	Tree		+
14	Bridelia retusa	Tree	*		38	Pinus roxburghii	Tree		+
15	Caesalpinia spinosa	Shrub		+	39	Pinus wollichiono	Tree		+
16	Calotropis gigantea	Shrub	*		40	Psidium guajava	Tree	*	
17	Citrus aurantium	Tree	*		41	Quercus semiserrata	Tree		+
18	Citrus limon	Shrub	*		42	Spondias pinnata	a Tree		
19	Commelina benghalensis	Tree	*		43	Syzygium formosum	Im formosum Tree		+
21	Dendrocalamus strictus	Tree	*		44	Terminalia bellirica	Tree	*	
21	Dendrocalamus giganteus	Tree		+	45	Terminalia chebula	Tree	*	
22	Dendrocalamus hamiltonii	Tree		+	46	Terminalia myriocarpa	Tree		+
23	Erythrina variegata	Tree	*		47	Trema orientalis	Tree	*	

S. No.	Name of the Species	Habit	S Sp	Ad Sp	S. No.	Name of the Species	Habit	S Sp	Ad Sp
24	Ficus roxburghii	Tree	*						
	Total Species (DSS)	Directly Selected Species (DSS) = 23							
	Total Species (GBSA)	Genera based species added <i>(GBSA)</i> = 24							
	Grand Total	Overall Recommended Species = 47							

S Sp: Slected Species from CPCB 2000; Ad SP : Genera from CPCB 2000 and species of the specific genus selected form present study list made based on the survey

Annexure 7.3: Observed feeding plants of some common butterflies of the Etalin HEP study area (Modified as per field specificity from Gay et al., 1992)

S. No.	Family / Scientific Name	Common Name	Feeding plants	Habit
	Family:			
1	Troides Helena cerberus	Common Birdwing	Aristolochia indica	Climber
2	Graphium sp.	Bluebottle	Cinnamon sp Laurels sp	Tree
3	Catopsilia Pomona crocale	Common Emigrant	Cassia sp	Shrub
4	Catopsilia pyranthe pyranthe	Mottled emigrant	Cassia occidentalis	Shrub
	Lycaenidae			
5	Pseudozizeeria maha maha	Pale Grass Blue	Oxalis corniculate	Herb
6	Lampides boeticus	Peablue	Flame of the forest Pods of cultivated peas, grams and beans	Tree Herb
7	Jamides celeno	Common Cerulean	Flame of the forest	Tree
8	Loxura atymnus continentalis	Yamfly	Dioscorea pentaphylla Smilax sp	Climber Climber
	Nymphalidae			
9	Tirumala septentrionis septentrionis	Blue Tiger	Hoya sp	Climber
10	Lethe rohria rohria	Common Tree Brown	Bamboo	Herb
11	Ypthima hubneri	Common Fourring	Grasses	Herb
12	Ypthima sakra sakra	Common Fivering	Grasses	Herb
13	Argynnis hyperbius hyperbius	Indian Fritillary	Viola sp	Herb

S. No.	Family / Scientific Name	Common Name	Feeding plants	Habit
14	Junonia oithya	Blue Pansy	Justicia sp	Shrub
15	Junonia iphita iphita	Chocolate Pansy	Justicia sp	Shrub
16	Vanessa cardui	Painted Lady	Artemisia sp Blumea sp Urtica sp	Herb Herb Shrub
17	Cyretis thyodamas thyodamas	Common Map	Ficus sp	Tree
18	Neptis hylas varmona	Common Sailer	Grewia sp Mucuna sp	Tree Climber
19	Athyma perius perius	Common Sergeant	Glochidion sp.	Tree
20	Rohana parisatis parisatis	Black Prince	Celtis tetrandra	Tree
21	Libythea lepitalepita	Common Beak	Boehmeria sp Debregasia sp Buddleja sP Celtis sp	Shrub Shrub Tree
	Hesperiidae			
22	Hasora chromus chromus	Common Banded Awl	Ricinus communis	Shrub
23	Notocrypta sp.	Grass Demon	Curcuma sp Hedychium sp	Herb Herb

Annexure 7.4: Larval host plants of some common butterflies of the Etalin HEP Study Area
(Modified as per field specificity from Kunte, 2008)

S. No.	Family / Scientific Name	Common Name	Larval Host Plant	Habit
	Papilionidae			
1	Graphium sarpedon sarpedon	Common Bluebottle	Alseodaphne sp Cinnamomum sp Litsea sp	Tree Tree Tree
2	Graphium doson axion	Common Jay	Cinnamomum sp Magnolia sp Michelia champaca	Tree Tree Tree
3	Papilio polytes Romulus	Common Mormon	Citrus aurantifolia C. limon Murraya paniculata	Tree Shrub/Tree Shrub/Tree
4	Catopsilia pomona crocale	Common Emigrant	Cassia sp Bauhinia sp	Shrub Tree
5	Catopsilia pyranthe pyranthe	Mottled Emigrant	C. occidentalis	Shrub
	Lycaenidae			
6	Neptis hylas varmona	Common Sailer	Bombyx ceiba Grewia sp Mucuna purpurea	Tree Tree Climber
7	Lampides boeticus	Peablue	Pisum sativum	Herb
	Nymphalidae			
8	Vanessa cardui	Painted Lady	Artemisia sp Bluema sp Debregeasia sp Gnaphalium sp	Herb Herb Shrub Herb
9	Tirumala septentrionis septentrionis	Blue Tiger	Calotropis gigantea Hoya sp	Shrub Climber
	Hesperiidae			
10	Hasora chromus chromus	Common Banded Awl	Ricinus communis	Shrub
11	Tagiades cohaerens cynthia	Water Snow Flat	Dioscorea sp Smilax sp	Climber Climber
12	Notocrypta curvifascia curvifascia	Restricted Demon	Costus speciosus Curcuma sp Zingiber montanum	Herb Herb Herb

S. No.	Family / Scientific Name	Common Name	Larval Host Plant	Habit
13	Notocrypta sp.	Grass Demon	Zingiber sp Curcuma sp	Herb Herb

Annexure 7.5 : Cavity / Hole Nesting Birds recorded in the Etalin HEP Study Area, and Structural details on Nest Boxes

S.No.	Scientific Name	English Name	P/S Cavity Nesters	Nest Box Size	Hole Diameter in cm
1	Aegithalos concinnus	Black-throated Tit	S	Small	4-5
2	Aegithalos iouschistos	Black-browed Tit	S	Small	4-5
3	Buceros bicornis	Great Hornbill	S	Very Large	20-25
4	Falco tinnunculus	Common Kestrel	S	Large	12-15
5	Falco severus	Oriental Hobby	S	Large	12-15
6	Copsychus saularis	Oriental Magpie Robin	S	Small	4-5
7	Melanochlora sultanea	Sultan Tit	S	Small	4-5
8	Parus monticolus	Green-backed Tit	S	Small	4-5
9	Parus spilonotus	Yellow-cheeked Tit	S	Small	4-5
10	Picumnus innominatus	Speckled Piculet	Р	Small	3
11	Dendrocopos canicapillus	Grey-capped Pygmy Woodpecker	Р	Small	3
12	Gecinulus grantia	Pale-headed Woodpecker	Р	Medium	7-8
13	Micropternus brachyurus	Rufous Woodpecker	Р	Medium	7-8
14	Blythipicus pyrrhotis	Bay Woodpecker	Р	Large	10
15	Dendrocopos darjellensis	Darjeeling Pied Woodpecker	Р	Small	5
16	Picus canus	Grey-headed Woodpecker	Р	Large	10
17	Chrysophlegma flavinucha	Greater Yellow-naped Woodpecker	Р	Large	10
18	Picus chlorolophus	Lesser Yellow-naped Woodpecker	Р	Medium	7-8
19	Psilopogon virens	Great Barbet	Р	Medium	7-8
20	Psilopogon asiaticus	Blue throated barbet	Р	Small	4-5
21	Psilopogon lineatus	Lineated Barbet	Р	Medium	6-7
22	Psilopogon franklinii	Golden-throated Barbet	Р	Small	6-7

S.No.	Scientific Name	English Name	P/S Cavity Nesters	Nest Box Size	Hole Diameter in cm
23	Sitta himalayensis	White-tailed Nuthatch	Р	Small	3
24	Sitta frontalis	Velvet-fronted Nuthatch	Р	Small	3
25	Glaucidium brodiei	Collared Owlet	S	Medium	7-8
26	Glaucidium cuculoides	Asian Barred Owlet	S	Medium	7-8
27	Otus spilocephalus	Mountain Scops Owl	S	Medium	8-9
28	Otus bakkamoena	Collared Scops Owl	S	Medium	7-8
29	Acridotheres tristis	Common Myna	S	Medium	7-8
30	Sturnia malabarica	Chestnut-tailed Starling	S	Small	4-5
31	Harpactes erythrocephalus	Red-headed Trogon	S	Medium	8-9
32	Harpactes wardi	Ward's Trogon	S	Medium	8-9

P/S Cavity Nesters: Primary / Secondary

Size of Nest Box: Small - height / depth = 20-22 cm, Length & width = 15 cm; Medium - height / depth =35-37 cm length & Width = 25 cm; Large - height /depth = 45 cm, Length & width = 35 cm; Very Large – height / depth = 75 cm, length / width = 50 cm

https://www.google.co.in/search?q=Nest+boxes+for+birds&source=Inms&tbm= isch&sa=X&ved=0ahUKEwjag_qlvILdAhUGTI8KHfL7AZ8Q_AUICigB&biw=1366&bih =635#imgrc=R7lwoniLoc_vXM:

Copyright - Green Future Foundation, New Delhi

Annexure 7.6: List of Fruiting Plant Species recommended as part of Habitat Restoration / Afforestation

S	S.No.	Scientific Name	Habit	Common Name
	1.	Tetrameles nudiflora	Tree	False hemp tree
	2.	Altingia excelsa noronha	Tree	

S.No.	Scientific Name	Habit	Common Name
3.	Calamus erectus	Climber	
4.	Calamus flagellum	Climber	
5.	Calamus floribundus	Climber	
6.	Calamus inermis	Climber	
7.	Calamus leptospadix	Climber	
8.	Michelia champaca	Tree	Champa
9.	Kydia calycina	Tree	Kydia
10.	Amoora wallichii	Tree	Amari
11.	Dysoxylum hamiltonii	Tree	
12.	Dysoxylum mollissimum	Tree	Red bean
13.	Toona hexandra	Tree	Red cedar/Toon
14.	Artocarpus chaplasha	Tree	
15.	Ficus cunia	Tree	Drooping fig
16.	Ficus roxburghii	Tree	Elephant ear fig
17.	Ficus semicordata	Tree	Drooping fig
18.	Morus laevigata	Tree	Himalayan Mulberry
19.	Ficus heterophylla	Tree	East Indian hairy fig
20.	Ficus lacor	Tree	
21.	Ficus cyrtophyllat	Tree	
22.	Ficus hookeriana	Tree	
23.	Maclura cochinchinensis	Climber	Cockspur thorn
24.	Knema cinerea	Tree	Wild nutmeg
25.	Psidium guajava	Tree	Guava
26.	Syzygium formosum	Tree	
27.	Rubus rosifolius	Shrub	Roseleaf bamble
28.	Rubus neives	Climber	Ceylon rasberry
29.	Rubus ellipticus	Shrub	Golden Himalayan rasberry
30.	Rubus foliolosus	Shrub	
31.	Rubus burkillii	Shrub	
32.	Rubus parviflora	Climber	Thimbleberry
33.	Citrus lemon	Tree	Lemon
34.	Murraya paniculata	Tree	Kamini
35.	Musa spp.	Tree	Snow/Rock Banana

S.No.	Scientific Name	Habit	Common Name
36.	Rhaphitophora decursiva	Climber	Creeping Philodendron
37.	Boehmeria longifolia	Shrub	
38.	Boehmeria macrophylla	Shrub	False nettle
39.	Bischofia javanica	Tree	Bishop wood
40.	Castanopsis spp.	Tree	chinquapin or chinkapin
41.	Lithocarpus dealbatus	Tree	
42.	Lithocarpus pachyphyllus	Tree	Thick leaved oak
43.	Lithocarpus fenestratus	Tree	
44.	Lithocarpus falconeri	Tree	
45.	Lithocarpus elegans	Tree	
46.	Lithocarpus listeria	Tree	
47.	Poilokospermum Ianceolatum	Climber	
48.	Debregeasia spp.	Shrub	Wild rhea
49.	Oreocnide spp.	Shrub	Wild rhea
50.	Phoebe spp.	Tree	
51.	Cinnamomum spp.	Tree	Cinnamon
52.	Alseodaphne spp.	Tree	Alseodaphne
53.	Lithocarpus spp.	Tree	Stone oak
54.	Sauraria nepalensis	Tree	
55.	Canarium strictum	Tree	Black dhup or Black dammar
56.	Dillenia indica	Tree	Elephant apple or chulta
57.	Macaranga denticulate	Tree	
58.	Duabanga grandiflora	Tree	Duabanga

Annexure 7.7. Suggested Native Tree species of Project Study Area for Restoration

S.No	Species Name	Habit	S.No	Species Name	Habit
1	Boehmeria longifolia	S			
2	Boehmeria macrophylla	S	14	Milletia pachycoyea	С
3	Chloranthus elatior	S	15	Ostodes paniculate	Т
4	Clematis acuminata	С	16	Periploca calophylla	С
5	Debregeasia sp.	S	17	Phlocanthus curviflorus	S

6	Engelhardtia spicata	Т	18	Piper clerki	С
7	Ficus semicordata	Т	19	Rhaphitophora decursiva	С
8	Kydia calycina	Т	20	Rhynchotechum ellipticum	S
9	Laportea sp.	S	21	Sambucus hookeri	S
10	Lithocarpus fenestratus	Т	22	Smilax sp.	С
11	Lithocarpus pachyphyllus	Т	24	Stephania sp.	С
12	Litsea cubeba	Т	25	Terminalia myocarpa	Т
13	Macaranga denticulata	Т	26	Tetrastigma affine	С
	T-tı	ree, S-shru	ib, C=Cre	eper	

Annexure 7.8: List of Orchids, Pteridophytes and Lichens of the Etalin HEP Study Area (secondary sources) and species reported during the Present Biodiversity Survey *

	LIST OF ORCHIDS – Orchidaceae					
S.No	Species name	S.No	Species name			
1	Aerides multiflora	18	Dendrobium lituiflorum			
2	Arundina graminifolia	19	Goodyera procera*			
3	Bulbophyllum affine*	20	Eria flava			
4	Bulbophyllum careyanum	21	Lepanthes pedunculata			
5	Bulbophyllum cauliflorum	22	Liparis delicatula*			
6	Bulbophyllum guttulatum	23	Phaius flavus			
7	Calanthe griffithii	24	Pholidota imbricata			
8	Coelogyne barbata	25	Rhynchostylis retusa			
9	Coelogyne corymbosa	26	Spiranthes sinensis			
10	Cymbidium aloeifolium*	27	Anoectochilus brevilabris*			
11	Cymbidium eburneum	28	Calanthe plantaginea*			
12	Cymbidium elegans	29	Coelogyne stricta*			
13	Cymbidium cyperifolium	30	Cymbidium lancifolium*			
14	Cymbidium iridioides	31	Dendrobium transparens*			
15	Dendrobium densiflorum	32	Epipogium roseum*			
16	Dendrobium hookerianum	33	Tropidia curcugiloides*			
17	Dendrobium moschatum	34	Vanda cristata *			
	LIST OF P	TERIDOPH	YTES			
	Family & Species name		Family & Species name			
1	Adiantaceae	17	Lepisorus nudus			
1	Adiantum caudatum	18	Microsorum membranaceum			

	2	Adiantum philippense		19	Microsorum punctctum
2		Angiopteridaceae		20	Microsorum pteropus
	3	Angiopteris evecta		21	Polypodium amoenum
3		Aspleniaceae		22	Phymatopteris ebenipes *
	4	Asplenium nidus		23	Phymatosorus cuspidatus*
4		Cyatheaceae	11		Lycopodiaceae
	5	Cyathea gigantea *		24	Lycopodium clavatum
	6	Cyathea spinulosa*	12		Nephrolepdaceae/Davalliaceae
5		Gleichiaceae		25	Nephrolepis cordifolia
	7	Dicranopteris linearis		26	Nephrolepis auriculata *
6		Athyriaceae	13		Cryptogrammaceae
	8	Diplazium bentamense		27	Onychium siliculosum
	9	Diplazium sp.*	14		Aspidiaceae
7		Polypodiaceae		28	Polystichum aculeatum*
	10	Drymoglossum heterophyllum	15		Thelypteridaceae
	11	Dryoathyrium boryanum		29	Pronephrium affine
8		Equisetaceae	16		Hypoleppidaceae/Dennstaedtiaceae
	12	Equisetum ramossimum*		30	Pteridium aquilinum*
9		Gleicheniaceae	17		Pteridaceae
	13	Gleichenia longissima		31	Pteris quadriaurita
10		Polypodiaceae		32	Pterisvittata
	14	Arthromeris wallichiana	18		Selaginellaceae
	15	Lepisorus excavata *		33	Selaginella indica *
	16	Lepisorus sordidus *			
		LIST C	OF LIC	HENS	
1		Coccocarpaceae	8		Pilocarpaceae
		Coccocapia			Byssolma
2		Collemataceae	9		Pyrenulaceae
		Leptogium			Anthracothecium
3		Cryptotheciaceae	10		Rhizocarpaceae
		Cyptothecia			Rhizocarpon
4		Graphidaceae	11		Teloschistaceae
		Phaeographina			Brigantiaea
5		Letrouitiaceae	12		Thelotremataceae

	Letrouitia		Diplochistes	
6	Parmeliaceae	13	Usneaceae	
	Parmelina wallichaina		Bryonia	
7	Physciaceae	14	Usneaceae	
	Physcia		Usnea baileyi*	
	* Species Reported during this survey in the project area			

Annexure I

GOVERNMENT OF ANONAGHAL PRO DEPARTMENT OF ENVIRONMENT & FOREST ITANAGAR.

NO.FOR-279/CONS/2010/Vol-1 / 131-40

Dated Itanagar, the 23" June 2017

The Director, Wildlife institute of India (Wil) Chandrabani, Mehu Wala Mafi, Uttarakhand-248007

Sub: To conduct multiple seasonal replicate study for the preparation of Wildlife & Biodiversity Management plan.

Sir.

1

The 'Forest Advisory Committee' (FAC), MoEF&CC, Govt. of India, in its meeting held on 28/02/2017 recommended to conduct a multiple seasonal replicate study on Biodiversity Assessment of the catchment area of 3097 MW, Etalin Hydro Electric Project in Dibang Vailey district of Arunachal Pradesh. The recommendation of FAC in respect of Etalin Hydro Electric Project is enclosed herewith for your ready reference. The minutes of meeting taken by PCCF (WL &BD) and Chief Wildlife Warden, Arunachal Pradesh with user agency in this respect is also enclosed for your reference.

You are requested to conduct multiple seasonal replicate study of the catchment area of aforementioned Hydro Electric Project and prepare and submit Wildlife & Blodiversity plan. All expenditure in respect of the study shall be borne by user agency i.e. M/s Etalin HEP Company Ltd. - Gurgaon.

Enclo: As above.

Yours faithfully,

(Ishwar Singh), IFS APCCF & Nodal Officer (FCA)

Copy to:-

FEINST

- 1. The PCCF (WE &BD) & Chief Wildlife Warden, A.P. for information please.
- 2. IGF(C), Ministry of Environment & Forest, Govt. of India for Information please.
- 3. Addl. PCCF (Central), Eastern Regional office of MoEF&CC, GOI Shillong

- 19 -

4. M/s Etailin Hydro Electric Power Company Ltd. -Gurgaon-122001 (Harvana), for information and with the request to take up the issue with Wildlife Institute of India on mutually agreed terms and conditions. The entire expenditure for conducting study and preparation of Wildlife Management Plan shall be borne by user agency.

(Ishwar Singh), IFS APCCF & Nodal Officer (FCA)

dwo

18 July, 2017

No. WII/DWII/Misc/03/2014

To,

Shri Ishwar Singh APCCF & Nodal Officer (FCA) Department of Environment & Forest, Government of Arunachal Pradesh, Itanagar

Sub.: Technical and Financial Proposals to conduct multiple seasonal replicate study for the preparation of Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh – reg.

Ref.: Your letter No. 279/CONS/2010/Vol-I/836-40 dated 23 June, 2017

Sir,

With reference to the above, I am pleased to submit the Technical and Financial proposals to conduct multiple seasonal replicate study for the preparation of Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh for your kind perusal and further necessary action, please.

It is stated that Wildlife Institute of India may not be able to accept the funding for this study, which will be conducted based on the direction of Forest Advisory Committee (FAC), MoEFCC, Government of India, directly from the project proponent i.e. M/s Etalin, HEP Company Ltd., Gurgaon. In view of the above, it is stated that administrative and financial approval for this study may kindly be próvided by your office along with the funds as per the financial proposal enclosed.

Thanking you.

Yours faithfully, [Dr. V.B. Mathur] Director

Encl.: As above

- Cc.: 1. PPS to DGF & SS, MoEFCC, New Delhi
 - 2. The PCCF (WL & BD) & Chief Wildlife Warden, Arunachal Pradesh.
 - 3. The IGF (FC), MoEFCC, New Delhi
 - 4. Addl. PCCF (Central), Eastern Regional Office of MoEFCC, Shillong
 - 5. Dean, Wildlife Institute of India
 - 6. M/s Etalin, HEP Company Ltd., Gurgaon- 122 001 (Haryana)

पत्रपेटी संo 18, चन्द्रबनी, देहरादून — 248001, उत्तराखण्ड, मारत Post Box No. 18, Chandrabani, Dehradun – 248001, Uttarakhand, INDIA ई.पी.ए.बी.एक्स : +91-135-2640114, 2640115, 2646100 फैक्स : 0135-2640117 EPABX : +91-135-2640114, 2640115, 2646100; Fax : 0135-2640117; ई—मेल / E-mail: wii@wii.gov.in, तेब / website: www.wii.gov.in

No. WII/DWII/Misc/03/2014

28 July, 2017

To, Shri Ishwar Singh APCCF & Nodal Officer (FCA) Department of Environment & Forest, Government of Arunachal Pradesh, Itanagar

- Sub.: Technical and Financial Proposals to conduct multiple seasonal replicate study for the preparation of Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh – reg.
- Ref.: (i) Your letter No. 279/CONS/2010/Vol-I/836-40 dated 23 June, 2017 (ii) WII letter of even number dated 18 July, 2017

Sir,

With reference to the above, I would request you to kindly grant necessary

sanction and arrange to release the funds for this study so that work can be initiated at

the earliest.

Thanking you.

Yours faithfully,

[Dr. V.B. Mathur] Director

Cc.: 1. PPS to DGF & SS, MoEFCC, New Delhi

- 2. The PCCF (WL & BD) & Chief Wildlife Warden, Arunachal Pradesh.
- 3. The IGF (FC), MoEFCC, New Delhi
- 4. Addl. PCCF (Central), Eastern Regional Office of MoEFCC, Shillong
- 5. Dean, Wildlife Institute of India
- 6. M/s Etalin, HEP Company Ltd., Gurgaon- 122 001 (Haryana)

F. No. 8-20/2014-FC Government of India Ministry of Environment, Forests and Climate Change (Forest Conservation Division)

Indira Paryavaran Bhawan, Aliganj, Jorbagh Road, New Delhi- 110003 Dated: 25th September, 2017

The Director, Wildlife Institute of India (WII) Dehradun.

Sub: Diversion of 1346.561 ha of forest land for construction of Etalin Hydro Electric Project (3097 MW) in Dibang Valley District of Arunachal Pradesh by M/s Etalin Hydro Electric Power Company Limited, Arunachal Pradesh.

Sir,

0 m

0

I am directed to inform that the above subject proposal was considered by the FAC in its meeting held on 28.02.2017 and the FAC, after detail deliberation, recommended conducting multiple seasonal replicate studies on biodiversity assessment by an internationally credible institute as the current study (EIA) is completely inadequate in this regard. Accordingly, the State Government was requested vide this Ministry's letter of even number dated 28.03.2017 to furnish the detailed reply including study report as sought by the FAC.

The State Government had intimated that the Director, WII, Dehradun was requested to conduct th multiple seasonal replicate study for the preparation of Wildlife & Biodiversity Plans and the WII submitted 0 a proposal to conduct the aforementioned study and requested Government of Arunachal Pradesh to give administrative & financial approval along with the provisions of funds by the State Government.

It is further informed that this matter was also taken up in a meeting chaired by Secretoury, DoNER, Gol on 19.09.2017. He had requested this Ministry to take up the matter with WII to conduct the study at the earliest.

Taking into consideration the above facts, it has now been decided in the Ministry that Wildlife Institute of India (WII) to conduct the study on mutually agreed terms and conditions with the user agency and WII and the report of the said study may be submitted to the State Government/ user agency for further consideration.

The cost of the study will be borne by the user agency as demanded by WII for the specified study.

Shlewer . Yours faithfully, (Sandeep Sharma] ssistant Inspector General of Forests Copy to: The Principal Secretary (Forests), Government of Arunachal Pradesh, Itanagar. The Principal Chief Conservator of Forests, Government of Arunachal Pradesh, Itanagar. 2 3.

- The Nodal Officer, O/o the PCCF, Government of Arunachal Pradesh, Itanagar.
- 4. User Agency.
- Monitoring Cell, FC Divisions, MoEF&CC. 5.
- Guard File 6.

(Sandeep Sharma) 26

Assistant Inspector General of Forests

13 October 2017

No. WII/ ESM/GGV/Etalin

To,

Shri Anil Dhar Associate Vice President (Hydro) Etalin Hydro Electric Company Limited, Flat No. 3, First Floor, Tashi Yang Apartment, Prem Norbu Khirmey Building, MOWB II, Opposite to Office of Urban Development, Itanagar, Arunachal Pradesh – 791 111 Email: anil.dhar@jindalsteel.com

Sub.: Technical and Financial Proposals to conduct multiple seasonal replicate study for the preparation of Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh – reg.

Ref: MoEFCC Letter F.No. 8-20/2014-FC dated 25 September 2017

Sir,

With reference to the above, I am pleased to submit the Technical and Financial proposals to conduct multiple seasonal replicate study for the preparation of Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh for your kind perusal and further necessary action, please. The MoEFCC has accorded the administrative and financial approvals to WII for conducting the study. The cost of the study will be borne by the Etalin Hydro Electric Power Company Limited. The Institute's Bank details for etransfer of the funds is given below and the release of funds may be expedited so that the work can be initiated at the earliest. A draft MoU may be sent which can be duly signed by competent authorities of WII and EHEPCL.

Bank Name	Union Bank of India	
Beneficiary	Director, Wildlife Institute of India, Dehradun	
Account Number	518502010000001	
IFSC Code	UBIN0551856	
Swift Code	UBININBBDER	
Purpose	Wildlife Conservation Plan for the impact zone of Etalin HEP	

Thanking you,

Yours faithfully,

[Dr. V.B. Mathur]

[Dr. V.B. Mathur] Director

Encl: As above

- Cc.: 1. Etalin Hydro Electric Power Company limited, 5th Floor, Tower B, Jindal Centre, Plot No. 2, Sector – 32, Gurgaon- 122 001 (Haryana). Email: <u>anil.dhar@jindalsteel.com</u>, jagdish.soni@jindalsteel.com
 - 2. PPS to DGF & SS, MoEFCC, New Delhi. Email: dgfindia@nic.in, siddhantadas@gmail.com
 - The PCCF (WL & BD) & Chief Wildlife Warden, Arunachal Pradesh. Email: pccfcwlw-arn@nic.in, pccfwildlife@gmail.com
 - 4. The IGF (FC), MoEFCC, New Delhi. Email: igfwl-mef@nic.in, soumitra444@rediffmail.com

पत्रपेटी सं0 18, चन्द्रबनी, देहरादून — 248001, उत्तराखण्ड, भारत Post Box No. 18, Chandrabani, Dehradun – 248001, Uttarakhand, INDIA ई.पी.ए.बी.एक्स : +91-135-2640114, 2640115, 2646100 फ्रैक्स : 0135-2640117 EPABX : +91-135-2640114, 2640115, 2646100; Fax : 0135-2640117; ई–मेल / E-mail: wii@wii.gov.in, वेब / website: www.wii.gov.in

22 November, 2017

No. WII/ ESM/GGV/Etalin

To,

Shri Anil Dhar Associate Vice President (Hydro) Etalin Hydro Electric Power Company limited, 5th Floor, Tower – B, Jindal Centre, Plot No. 2, Sector – 32, Gurgaon- 122 001 (Haryana) Email: anil.dhar@jindalsteel.com

- Sub.: Memorandum of Understanding between Etalin Hydro Electric Power Company Limited and Wildlife Institute of India to conduct multiple seasonal replicate study for the preparation of Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh – reg.
- Ref: Email from Dr. J. K. Soni, Group Executive Vice President (Environment), Jindal Steel & Power Limited dated 21 November, 2017

Sir,

With reference to the above, I am enclosing herewith 2 signed copy of the Memorandum of Understanding between Etalin Hydro Electric Power Company Limited and Wildlife Institute of India to conduct multiple seasonal replicate study for the preparation of Wildlife Conservation Plan for the impact zone of Etalin HEP, Dibang Valley District, Arunachal Pradesh with an overall budget of Rs. 170.36 lakhs. It is requested that the MoU may be signed at your end and 1 copy may be sent to us for our records.

In order to facilitate WII for conducting the study it is requested that the first instalment representing 35% of the total budget i.e. Rs. 59.63 Lakhs may kindly be transferred. The Institute's Bank details for e-transfer of the funds is given below:

Bank Name	Union Bank of India	
Beneficiary	Director, Wildlife Institute of India, Dehradun	
Account Number	518502010000001	
IFSC Code	UBIN0551856	
Swift Code	UBININBBDER	

Thanking you,

Yours faithfully,

[Dr. V.B. Mathur] Director

Encl: As above

- Cc.: 1. Dr. J. K. Soni, Group Executive Vice President (Environment), Jindal Steel & Power Limited, NTH Building, 3rd Floor, Qutub Institutional Area, A/2 Saheed Jeet Singh Marg, New Delhi-110067. Email: jagdish.soni@jindalsteel.com
 - PPS to DGF & SS, MoEFCC, New Delhi. Email: <u>dgfindia@nic.in</u>, <u>siddhantadas@gmail.com</u>
 - The PCCF (WL & BD) & Chief Wildlife Warden, Arunachal Pradesh. Email: <u>pccfcwlw-arn@nic.in</u>, <u>pccfwildlife@gmail.com</u>
 - 4. The IGF (FC), MoEFCC, New Delhi. Email: igfwl-mef@nic.in, soumitra444@rediffmail.com

पत्रपेटी सं0 18. चन्द्रबनी, देहरादून – 248001, उत्तराखण्ड, भारत Post Box No. 18, Chandrabani, Dehradun – 248001, Uttarakhand, INDIA ई.पी.ए.बी.एक्स : +91-135-2640114, 2640115, 2646100 फैक्स : 0135-2640117 EPABX : +91-135-2640114, 2640115, 2646100; Fax : 0135-2640117; ई–मेल / E-mail: wii@wii.gov.in, वेब / website: www.wii.gov.in

MEMORANDUM OF UNDERSTANDING

Between

Etalin Hydro Electric Power Company Limited

And

Wildlife Institute of India

This Memorandum of Understanding (MOU) is entered into on 22 Day of November 2017 between the following parties:

Wildlife Institute of India (WII) having their registered & Head Office at Post Box No. 18, Chandrabani, Dehradun – 248001, Uttarakhand, India, which expression shall unless repugnant to the context thereof mean and include its successors and assigns of the FIRST PART (here-in-after to be called 'THE FIRST PARTY' or 'WII') of the one part.

And

Etalin Hydro Electric Power Company Limited, 5th Floor, Tower-B, Jindal Centre, Plot No. 2, Sector-32, Gurgaon – 122001, Haryana, India, which expression shall unless repugnant to the context thereof mean and include its successors and assigns of the SECOND PART (here-in-after referred as 'THE SECOND PARTY' or 'EHEPCL') of the other part.

Hereinafter, WII and EHEPCL individually shall be referred as Party and jointly as Parties.

WHEREAS the first party in under the aegis of Ministry of Environment, Forests & Climate Change (MoEF&CC), Government of India, as an Autonomous Institute to provide services in the area of Wildlife for development of the Hydro Power Projects.

AND WHEREAS the second party is engaged in the development of Etalin HE Project in Dibang Valley District of Arunachal Pradesh, India.

AND WHEREAS EHEPCL desires availing the services of WII for conducting multiple seasonal replicate studies for the preparation of Wildlife Conservation Plan for the impact zone of Etalin HEP.

AND WHEREAS WII is agreed for providing the above services within its area of expertise to EHEPCL.

Now this MOU witnesses as follows:

- This Memorandum of Understanding provides broad understanding to mutually engage into the specific assignment based on the needs of the EHEPCL.
- Whenever solicited, WII shall render its expertise in the best possible manner as per the needs of EHEPCL at mutually agreed commercial terms.
- WII shall ensure confidentiality and non-disclosure of any data or information pertaining to EHEPCL or any of its projects.

1

- Both EHEPCL and WII being committed to this Memorandum of Understanding may use the identity of each other in various forms of its communications.
- This Memorandum of Understanding shall be effective for a period of one year, i.e., up to 30/11/2018 and shall be mutually agreed for renewal of the same.
- In the event of any difference of interpretation of any of the terms of this Memorandum of Understanding, the same shall be resolved through mutual discussions.
- All the disputes or differences arising out of this MOU shall be subject to the exclusive Jurisdiction of Civil Courts of Delhi only.

Project Background and Scope

The Etalin Hydro Electric Power Company Limited (EHEPCL) is developing 3097 MW Etalin Hydroelectric Power Project (HEPP) in Dibang Valley district of Arunachal Pradesh. The project envisages utilization of waters of Dri and Tangon rivers for hydropower generation. The two rivers are tributaries of Dibang River and confluence near Etalin village.

This project envisages construction of 2 dams namely (i) a 101.5 m high dam on Dri river near Yuron village about 22 km from Etalin and (ii) a 80 m high dam on 16 Tangon river about 800 m downstream of Anon Pani confluence with Tangon river (from the deepest foundation) with an Installed Capacity of 3,097 MW HEP. The Dri and Tangon Rivers are tributaries of Dibang River. The total land requirement for the project is 1,155.11 ha. The submergence area is 119.44 ha. An underground powerhouse is proposed with 10 units of 307 MW each. In order to utilize the releases of flow for sustenance of aquatic life, a dam - toe powerhouse with 19.62 MW capacity on Dri diversion and dam-toe powerhouse with 7.40 MW capacity on Tangon diversion have been proposed. A total of 18 villages consisting of 285 project affected families (PAFs) will be affected by the proposed project. The estimated cost of the project is Rs. 25,296.95 crores and it is proposed to be completed in 7 years.

WII proposes this study with the primary scope of assessing the biodiversity with respect HEP and its impacts, both through field surveys as well as through review of literatures and to suggest measures for species conservation and management. In this connection, status and distribution of certain rare, endangered and threatened faunal species which might use riverine and adjoining forests as migration corridors needs to be assessed on a priority basis so as to determine the impacts of hydropower project and to develop/evolve appropriate wildlife management plan. Special attention will be paid with respect to habitats of tigers.

Objectives

As per the advice of 'Forest Advice Committee (FAC)', MoEF&CC, Government of India has requested WII to conduct this multiple seasonal replicate study on biodiversity assessment of the catchment area of the Etalin HEP to develop a Wildlife Conservation Plan for the impact zone of the Etalin HEP. In this context, a study is proposed with following objectives;

- To determine the current status of wildlife habitat and distribution pattern of plants, mammals, birds, herpetafauna and fish within the impact zone of the Etalin Project area covering all seasons.
- Status and distribution pattern of certain 'Rare, Endangered and other Threatened Species (RET) in the impact of zone of HEP.

2

- Identification of critical habitats, wildlife corridors and migratory paths of RET species in the impact zone of the project. Habitat and migratory path of tigers will be given special attention.
- Develop a Wildlife Management Plan for the impact zone with respect to potential impact of HEP.

Methodology

The methodology planned is briefed below. Detailed methodology is outlined in the Concept Proposal enclosed to this MOU as Annexure - I.

- Land use / land cover types in Project Site
- Identification of corridors and migratory path of important wildlife within the impact zone
- Determination of distribution and relative abundance of mammalian species
- (Interview based information / trial walk / line transect / pellet count / camera trapping)
 Measurement of vegetation attributes
- Assessment of avian fauna in the impact zone of the Project
- Assessment of fish and their habitats
- Fish sampling
- Identification and assessment of "Rare, Endangered and other Threatened" species

Deliverables

Following the field surveys and collection of primary field data coupled with secondary information from available literatures, a detailed Wildlife Management Plan will be prepared.

Work Plan

Major Activities	Period	
Survey planning & designing, procuring entry permits and logistics, engaging project staff	Nov 2017	
Field Data collection	Dec' 2017 to April' 2018	
Report writing & information dissemination	May' 2018 to Sept' 2018	

Budget

Total cost of the study is Rs. 170.36 Lakhs (plus GST, as applicable). This cost comprises of the following components -

- Technical Manpower
 Rs. 110.70 Lakhs
 (Faculty / External Experts / Project Staff / Field Assistants)
- Field Equipment / Report Printing -(Camera traps / laptop / GPS / Binocular / etc)
- Institutional Charges (@15%)

Rs. 22.22 Lakhs

3

One vehicle in field along with driver, POL & maintenance, boarding and lodging for the team while in field and 5 local field staffs shall be provided by EHEPCL.

Terms of Payment with tentative timelines

Advance	35%	Rs. 59.63 Lakhs	Nov' 2017
On Mobilization of Field Staff with equipment for Field Studies	30%	Rs. 51.11 Lakhs	Dec' 2017
Submission of Draft Report	25%	Rs. 42.59 Lakhs	July' 2018
Submission of Final Report	10%	Rs. 17.03 Lakhs	Sept' 2018

Payments shall be released against each milestone within 30 days of submission of invoice/s, duly approved by EHEPCL.

For effective implementation and monitoring of the solicitation of expertise as envisaged in the MOU, Director, WII or an authorized representative shall be the Nodal Officer on behalf of 'WII', Group Executive Vice President (Environment) or an authorized representative shall be the Nodal Officer on behalf of 'EHEPCL'.

In WITNESS WHEREOF, the parties hereto have caused this agreement to be made in English and executed by their respective duly authorized representatives of the day and the year first above written.

let

Signed for and on behalf WII

Name

Witness

1.

2.

Designation

Malle

7, 101

डा. वि.बि. मायुर/Dr. V.B. Mathur निवेशक/Director भारतीय चन्यजीव संस्थान

aहरादन/Dehradun

Dr. Gopi, G.V-

Signed for and on behalf EHEPCL

AGRAWM SUNIL Name Designation ANP Aydro edw

298

_|

Post Box #18, Chandrabani, Dehradun - 248001, Uttarakhand, India t.: +91 135 2640114 -15 f.: +91 135 2640117 e.: wii@wii.gov.in